
Faculteit Ingenieurswetenschappen
Vakgroep Civiele techniek

Voorzitter: Prof. Dr. Ir. J. De Rouck

Combining genetic algorithms and boundary
elements to optimize coastal aquifers’

management using sheet pile walls

door

Koen Wildemeersch

Promotoren:
Prof. Dr. Ir. K. L. Katsifarakis (AUTH),

Prof. Dr. Ir. H. Peiffer (UGENT)

Scriptie ingediend tot het behalen van de academische graad van
master in de ingenieurswetenschappen bouwkunde

optie water- en transport

Academiejaar 2009–2010

This page intentionally left blank

Koen Wildemeersch

pile walls
to optimize coastal aquifers' management using sheet
Combining genetic algorithms and boundary elements

Academiejaar 2009-2010
Faculteit Ingenieurswetenschappen
Voorzitter: prof. dr. ir. Julien De Rouck
Vakgroep Civiele techniek

Master in de ingenieurswetenschappen: bouwkunde
Masterproef ingediend tot het behalen van de academische graad van

Begeleider:
Promotoren: prof. dr. ir. Herman Peiffer, Kostas Katsifarakis

Foreword

Six years ago I had to make the decision whether to study computer or civil engineering. I
decided to go for the latter, but found out that combining both fields of engineering is achiev-
able and where most people do not agree, even very interesting. When professor Katsifarakis
suggested to combine both worlds as a thesis, I did not have to think twice. This was exactly
what I wanted.

This thesis was written while I was an Erasmus student in Greece. In total, I will have lived
10 months as a Greek (with a slightly different background) and now call this country my
home away from home. I feel compelled to first thank my Greek friends. They made me feel
at home, showed me good and special places, explained me their political problems, helped
me out where my language skills where not sufficient, and so much more. Without them
Erasmus would not have been as good an experience. Efgaristo!

Erasmus is in my opinion a really a great experience and I would strongly advise everybody to
do it. It opens your eyes: new insights, a new culture, meeting a lot of people from all over the
world. I consider myself very lucky with my flatmates and I want to thank them: Alex from
France, Mari from Estonia, Jaime from Columbia and Xu from China. I cannot imagine a
more diverse and interesting company. Together we lived our own ’Auberge Espaniol ’. Thank
you for showing me your culture and sharing your friendship. Merci, Aitäh, Graçias, Xie
Xie!

Writing a thesis is never a work done all by oneself. I especially want to thank my promoter
professor Katsifarakis. My greek friends told me I had to consider myself lucky with this
professor as a promoter and they where right. Thank you for sharing your knowledge and
experience in the topic in such a modest and friendly way. Thank you as well for letting me
go my own way and working out my own ideas. Next to academic help I also want to thank
professor Katsifarakis for explaining and showing me his country. The help and information
I got went much further than what was strictly necessary for my thesis alone. Efgaristo para
poli!

I also want to thank the Aristotle University of Thessaloniki for accepting me as an Erasmus
student, and Ghent University (Universiteit Gent) for accepting the Erasmus proposal. I also
want to thank the Greek and Belgian Erasmus office. Being an Erasmus student brings along
some extra issues and without the help received it would not have been possible. Thank you
professor Peiffer (Ugent) to mentor my thesis. Efgaristo, Bedankt!

During the first month of my Erasmus exchange I attended a Greek language course at the
University of Aegean, school of social sciences, on Mytiline island. Together with 25 other

iii

people from all over Europe we learned the basics of the Greek language. Thank you Roula
for teaching us! Efgaristo poli!

This was the third time I wrote a thesis and it is as a consequence the third time that I need
to thank my parents. Without them none of this would have been possible in the first place.
Merci!.

Writing in a language that is not your own brings along some problems, as does writing in
general. Thank you Richard (United Kingdom) for going through my text and correcting the
uncountable mistakes. Thank you Nikos (Greece) for reading my text from the point of view
of an engineer. And thank you Mari (Estonia) for reading my text and giving my information
about genetics. Thank you, Efgaristo, Aitäh!

The figures in this LATEXthesis are all vector figures and I want to thank Ibe (Belgium) for
his contribution. Bedankt!

I want to end with my life motto: Vive la vie en rose (Edith Piaff)

Koen Wildemeersch
Thessaloniki

April 29, 2010

iv

Copyright

De auteur geeft de toelating deze masterproef voor consultatie beschikbaar te stellen en delen
van de masterproef te kopiëren voor persoonlijk gebruik. Elk ander gebruik valt onder de
beperkingen van het auteursrecht, in het bijzonder met betrekking tot de verplichting de
bron uitdrukkelijk te vermelden bij het aanhalen van resultaten uit deze masterproef.

The author gives permission to make this master dissertation available for consultation and
to copy parts of this master dissertation for personal use. In the case of any other use, the
limitations of the copyright have to be respected, in particular with regard to the obligation
to state expressly the source when quoting results from this master dissertation.

Koen Wildemeersch, april 2010

v

Combining genetic algorithms and boundary
elements to optimize coastal aquifers’ management

using sheet pile walls
Koen Wildemeersch

Supervisor(s): Kostas Katsifarakis, Herman Peiffer

Abstract— This master’s thesis combines genetic algorithms with a
boundary element method that calculates the flow in a coastal aquifer. The
goal of doing so is to optimize the total pumped flow of fresh water from the
aquifer without sea water intrusion taking place. In order to improve the
volume of water pumped, a sheet pile wall can be placed.

Keywords—Genetic algorithm, boundary element method, optimization,
sheet pile wall, water management

I. INTRODUCTION

CLIMATE change and human intervention have lead to a
lack of fresh water. Fresh water can be found underground

and extracted, but when this aquifer is close to the sea, special
care should be taken not to create an inflow of saline water in
the aquifer by extracting to much. This would eventually turn
the fresh water into saline water, making the aquifer unusable
for the extraction of fresh water. A good management of the
aquifer is therefore required and it should be clear how much
water can be extracted from the aquifer without having seawater
intrusion.

One technique to calculate the flow in aquifers is to use a
boundary element method. In this thesis the boundary element
method will be used by a genetic algorithm to optimize the ex-
tracted flow from the aquifer by placing a sheet pile wall on the
coastline. The genetic algorithm is used to find out what the best
combination of a sheet pile wall and water extraction from dif-
ferent wells is. The algorithm designed is written in C#, and a
pre- and post processor were designed so the user does not need
to know any input syntax.

II. THEORETICAL BACKGROUND

A. Genetic algorithm

A genetic algorithm is a search and optimization technique
based upon Darwin’s theory of the survival of the fittest. A po-
pulation of candidate solutions, represented each by a chromo-
some, is generated and their fitness is calculated. Based upon the
fitness each chromosome is assigned, it has a different probabil-
ity to be selected and to go to the next round. Just as with real
chromosomes, they can undergo changes from one generation to
another. Chromosomes in this thesis can undergo crossover mu-
tation and antimetathesis with a constant or a linear probability.
Selecting can take place in three ways: roulette wheel selec-
tion, ranking and constant selection. The changes made to the
chromosome may result in a higher fitness function which give
it a higher chance to survive. The algorithm is also designed in
such a way that all variables can have their own subchromosome
length.

The idea is that after a certain amount of generations the fittest
chromosome dominates the population and the optimum candi-
date solution is found. To achieve this the fitness awarded to
each chromosome is very important. The choice of the fitness
function is hence very important and crucial to find very fit so-
lutions. The chromosomes used in this thesis are represented
by a binary, i.e a string of 1 and 0’s. For every binary the in-
teger value can be calculated and from that a double value is
calculated knowing the upper and lower double value for the
chromosome.

In order not to lose the fittest chromosome due to selection,
crossover, mutation or antimetathesis, elitism is used to make
sure that the fittest chromosome passes to the next generation
without undergoing changes.

B. Boundary element method

The boundary element method is a technique used to solve
differential equations of a function u, only knowing what are
the conditions on the boundary of the the domain u is valid on.
In this thesis the differential equation is the Poisson equation
∇2u = f which governs the flow in a homogeneous aquifer.

This thesis starts with the mathematical background needed
in order to solve the differential equation and how to transform
its analytical solution to a numerical solution that can be used
for computation. The boundary of the domain is therefore dis-
cretized into a chain of boundary elements on which the bound-
ary conditions are assumed to be constant.

The use of a boundary element method is very effective for
adding the influence of wells and specific for this thesis the use
of a sheet pile wall will be included in the boundary element.
The boundary element method that is developed can be used
for multiple boundary domains (multiple zones) with a constant
transmissivity in each zone and for constant boundary condi-
tions on the elements.

C. Combining both

The fitness function required for the genetic algorithm will
be calculated by the boundary element method. This approach
has been used before and is said to be the perfect marriage [1]
by Harrouni, Ouazar et. al. It is correct to say that the genetic
algorithm uses the boundary element method. The genetic al-
gorithm will create chromosomes representing the flow rate ex-
tracted from wells and the beginning and end point of a sheet
pile wall on the coastline. The double values of these chromo-
somes will be used as input for the boundary element method

vi

and with the results of the boundary element method a fitness
function will be calculated. This fitness function uses the sea-
water intrusion calculated. When a lot of seawater intrusion was
calculated the fitness will be low and vice versa.

D. Implementing a sheet pile wall

A sheet pile wall is a piece of the coastline were no inflow is
allowed: un = 0. Implementing a sheet pile wall means that
the user input needs to be modified. This is done by allowing
the genetic algorithm to change the input data for the boundary
element method. The sheet pile wall can start at a random point
on the coast so it is not clear if the beginning and endpoint of
the sheet pile wall will be the same as the boundary elements.
To resolve this problem new boundary elements can be created
and existing can be added.

E. Reducing the calculation work

During the test phase of the algorithm it became clear that
some possible improvement could be made to prevent recalcu-
lating what had been calculated before, and thus reducing the
calculation time and work. A first measurement was to store
the fitness of chromosomes that had been calculated. When the
same chromosome occurred for a second time its fitness could
be read from the memory without going through the boundary
element method again. When the chromosome had not yet been
generated it could be that the coordinates of the wells had been
calculated before. If so, the zone were the well was in would
be stored and related to this set of coordinates. Especially in the
case were the wells have a fixed position this leads to a very high
calculation reduction.

Next to that, more calculation reduction was achieved by sort-
ing the arrays used in the boundary element in such a way that
parts of the arrays never needed to be calculated again.

III. RELIABILITY OF THE DESIGNED ALGORITHM

In a first step the boundary element method was designed
without a sheet pile wall. For this algorithm a lot of school book
examples are available and the solutions obtained with the al-
gorithm were compared with the examples from the book. The
results were satisfying.

In a second step, a genetic algorithm was developed. This
algorithm was first tested for simple fitness functions that did not
use the boundary element method. The algorithm did as was to
be expected and in a third step the boundary element method and
the genetic algorithm were combined. The candidate solutions
obtained from the combined use where then compared to the
results obtained via the traditional solving way (calculating each
candidate solution).

In a last step the use of a sheet pile wall was implemented.
This made it possible to change the user input of the boundary
elements based upon the chromosome calculated by the genetic
algorithm.

IV. OBJECTIVES

Originally three objectives were formulated. The first was to
calculate the best combination of fresh water extraction through
two wells with fixed coordinated for a given aquifer and known

boundary conditions. This objective was set because the results
could then be compared to that of Dr. Petala [2], who had stud-
ied this in here doctoral thesis. This objective was thus set to
be sure that the algorithm worked in the way it was supposed to
work.

The second objective was to include a sheet pile wall and
see what the effect was on the maximum flow that could be ex-
tracted.

In a third and last objective the genetic algorithm was com-
bined with the boundary element method that allowed the place-
ment of a sheet pile wall, in order to optimize the aquifer. These
last two objectives were taken together and are discussed in de-
tail.

V. THE AQUIFER STUDIED

The aquifer studied in this thesis was studied before in the
doctoral thesis of Dr. Petala [3]. It exists out of two zones with
a different tranmissivity as depicted in figure (1). In zone 1,
T1 = 0.001 m/s and T2 = 0.003 m/s in zone 2. Boundary
AB represents the coastline (on which the sheet pile wall can
be placed) and has a constant head boundary of u = 0 m. Lines
ADF andBCE represent two impermeable boundaries un = 0
and line FE is a permeable boundary that provides inflow of
fresh water due to the natural elevation: u = 50 m. u is the head
and un the flux.

u=50
1800, 2200

(1800, 2200)

1800, 400)

(200,0)

(200,1200)

((0,2200)

u=0

zone 0

zone 2

un=0

F

D

A

E

C

B

Fig. 1. Aquifer studied

VI. THE FITNESS FUNCTION USED

For all the objectives one and the same fitness function were
used. The fitness function used was designed for the first objec-
tive of this masters thesis and the doctoral thesis of Dr. Petala.

ΦK =

W∑

i=1

qw,i − (70 · κ− 7

κ∑

i=1

Ti · un,i · li) (1)

vii

In this function W is the number of wells (-), qw,i the flow in
well i (m3/s), κ the number of boundary elements that have sea
water intrusion (-), Ti the transmissivity of zone i (m/s), un,i the
calculated flux for boundary element i (m3/s) and li the length
of the boundary element (m). The last summation is made for
all un,i > 0, which represent inflow.

VII. RESULTS

A. Objective one: Optimization of two wells with fixed coordi-
nates

The results obtained from the algorithm could be compared to
those of Dr. Petala’s doctoral thesis [3]. In this thesis two wells
were placed in the same zone: W1 = (500, 700) and W2 =
(1400, 700). The best combination was then calculated to be
Q1 = 0.031 m3/s and Q2 = 0.038 m3/s.

Here, two combinations of equal fitness (for a precision step
of 0.00001 m3/s) were found: Q1 = 0.03129 m3/s, Q2 =
0.03829 m3/s and Q1 = 0.03135 m3/s, Q2 = 0.03823 m3/s.
The fitness for both solutions was 0.06958. The results were
thus very satisfactory. The fact that two chromosomes showed
to be as fit can be explained by the discontinuous search space
and the fact that for both subchromosomes (Q1 and Q2) had the
same length and the same upper and under values were used.

B. Objective two and three: Implementation of a sheet pile wall

Before running the algorithm, a set of good input parame-
ters for the genetic algorithm was researched. Different factors
were tested for the following input data: PS = 50, NOG =
100, NOT = 10, Pc = 0.35, Pm = Pf = 0.06, ε = 1 and mu-
tation and antimetathesis both took place in every generation.
The sheet pile wall had a length of 1000 m. (PS = population
size, NOG = number of generations, NOT = number of trials,
Pc, Pm, Pf the crossover, mutation and antimetathesis proba-
bility, resp.)

A first parameter tested was the selection type used. Con-
stant selection with a constant of 4 showed to be the best choice,
bused upon the memory size and the required calculation time
that showed to be the smallest. The number of fittest solution
found was also the biggest using this selection technique.

A small test was made where mutation and antimetathesis
could take place one per chromosome or once per gene. Once
per gene showed not to be sufficient to find good results. On the
other hand allowing mutation and antimetathesis for every gene
proved to be much better.

The influence of the population size and the number of gener-
ations was considered. Increasing the population size did not re-
sult in finding extra fit solutions. Increasing the number of gen-
erations resulted in a few more fittest solutions found. Because
only few extra were found and the number of trials increased by
50, the decision was made not to increase the number of gener-
ations carried out.

The second last parameter tested was to use mutation and an-
timetathesis interchangingly or not. Interchanging use resulted
in less fit solutions found. The memory size was also smaller
which indicated that the solution area was not searched enough.
When for every generation, first mutation and then antimetathe-
sis took place, the results proved to be better. There for mutation

and antimetathesis was used in the last way.
The last parameter researched was called refreshment. An

analysis of the fitness evolution had shown that the fitness some-
times not increased for a very long time. Therefore the idea was
to inject new chromosomes in the population in the hope that
they would lead to fitter chromosomes in the next generation.
Three different injections were carried out: in a first a number
of randomly populated chromosomes were added to the popula-
tion size (similar to ranking). When refreshment took place soon
after stabilization of φ, the number of fittest chromosomes found
decreased. Allowing the algorithm more time before refreshing
did not improve the results, but only caused more calculations
to be carried out. The idea was then to refresh with highly fit
chromosomes from the last generation. They would first be mu-
tated or would first undergo antimetathesis with a probability of
100% in only one of the genes.The results found were less fit.
Therefore the idea of refreshment was not used.

After having studied the settings for the genetic algorithm,
the algorithm could be used to calculate objective 2 and 3. 5
different sheet pile wall lengths were studied = 200, 400, 600
and 800 m. For long sheet pile walls two groups of solutions
seemed to be calculated. A first protected W2 by placing the
in front of this well. This lead to an increase of Q2, but Q1

was generally found to be less than was calculated in objective
2. The second group of solutions placed the sheet pile wall in
between the two wells. Doing so both could extract more water
from the aquifer. The first group was found to be always fitter
than the last group.

For shorter sheet pile walls all runs point out that the sheet
pile wall always protects W2. There was a very clear relation
between the length of the sheet pile wall and the total flow ex-
tracted: longer sheet pile walls lead to more extracted water
without sea water intrusion.

C. Comparison to one extra well

In a last test, it was researched if it was possible to obtain the
same improvements by using a third well , W3 = (1050, 750),
instead of a sheet pile wall. The best result calculated were:
Q1 = 0.0281, Q2 = 0.0319, Q3 = 0.0113 m3/s and the total
flow rate was 0.07129 m3/s. This result was only better com-
pared to the use of a sheet pile wall of 200 m.

REFERENCES

[1] K. El Harrouni, D. Ouazar, et al., Groundwater: Boundary Element Tech-
niques in Geomechanics, eds G.D. Manolis & T.G. Davies. CMP/Elsevier,
Amsterdam, 1993, pp. 243-94.

[2] K.L. Katsifarakis and Z. Petala, Combining genetic algorithms and
boundary elements to optimize coastal aquifers’ management, Jour-
nal of Hydrology. Elsevier, Amsterdam, 2006, pp. 200-207, doi.
10.1016/j.jhydrol.2005.11.016.

[3] Z. Petala, Optimizing management of coastal aquifers by means of genetic
algorithms, (in Greek) PhD thesis, Department of Civil Engineering, Aris-
totle University of Thessaloniki, Greece, 2004. 260 pp.

viii

Contents

Foreword iii

Copyright v

Extended abstract v

Table of contents ix

Nomenclature and abbreviations xii

1 Introduction and objectives 1

2 Genetic algorithms 3
2.1 Genetic algorithms versus traditional solution finding 3
2.2 How do genetic algorithms work: analogy to natural genetics 4
2.3 Chromosomes and the binary system . 4
2.4 Operators . 6

2.4.1 Selection . 6
2.4.2 Crossover . 7
2.4.3 Mutation . 8
2.4.4 Antimetathesis . 8
2.4.5 Elitism . 9

2.5 A simple example . 9
2.6 Test functions . 11

2.6.1 ϕmax as function of γ . 11
2.6.2 Off and on-line performance . 11
2.6.3 Convergence velocity . 12
2.6.4 The run with maximum fitness . 12

3 Boundary element method 13
3.1 Introduction . 13

3.1.1 In this chapter . 13
3.1.2 What is the boundary element method 13
3.1.3 Why the boundary element method? - Comparison to FEM 14

3.2 Mathematical background . 14
3.2.1 The Gauss-Green theorem . 15
3.2.2 The divergence theorem of Gauss . 17

ix

3.2.3 Green’s second identity . 18
3.2.4 The Dirac delta function . 19
3.2.5 The fundamental solution . 19

3.3 Mathematical formulation of the boundary element method 21
3.3.1 Homogeneous equation . 21
3.3.2 Non homogeneous equation . 27

3.4 Numeric formulation . 28
3.4.1 Discretization . 28
3.4.2 Hij and Gij . 30
3.4.3 Multi-zone body or composite domain 34
3.4.4 Well influence . 34
3.4.5 Sheet pile wall . 35
3.4.6 Gauss elimination . 38

3.5 Minimizing the calculation work . 39
3.5.1 Calculating A and Bt immediately . 39
3.5.2 Reducing calculation time for A and Bt matrix 40

3.6 Simple example . 41

4 Combined use of genetic algorithm and boundary element method 45
4.1 Further minimization of the calculation work 45

4.1.1 Well memory . 45
4.1.2 Chromosomes memory . 46

4.2 Schema . 46

5 Application examples 51
5.1 Objective 1: optimal well flow for two fixed wells 52

5.1.1 Results . 53
5.1.2 The use of the memory per trial . 53
5.1.3 Reducing calculation time for A and Bt matrix 55
5.1.4 From good to optimum results . 55

5.2 Objective 2 and 3: implementation of a sheet pile wall - Input parameters . . 57
5.2.1 Different selectors . 57
5.2.2 Influence of mutation and flip probability 58
5.2.3 Fine tuning the results . 59
5.2.4 Influence of the population size and number of generations 60
5.2.5 Interchanging mutation and antimetathesis 61
5.2.6 Refreshment . 61

5.3 Objective 2 and 3: implementation of a sheet pile wall - comparison for 5
different lengths . 63
5.3.1 Sheet pile wall of 1000 m . 64
5.3.2 Sheet pile wall of 800 m . 64
5.3.3 Sheet pile wall of 600 m . 66
5.3.4 Sheet pile wall of 400 m . 66
5.3.5 Sheet pile wall of 200 m . 67
5.3.6 Summary . 67

5.4 Sheet pile wall versus one extra well . 68

x

6 Discussion and conclusions 69
6.1 Reliability of the designed algorithm . 71
6.2 Further research . 71

A Post processor 73

B Extract of source code 77

Bibliography 146

List of Figures 148

List of Tables 149

xi

Nomenclature and abbreviations

Nomenclature used for genetic algorithm

KK Selection constant (-) X chromosome
Gmax integer that hold the run where

the maximum was found (-)
Φ fitness function

NOG Number of generations (runs) (-) φ fitness
NOT Number of trials (-) φave average fitness
NOV Number of variables (-) φmin min fitness
P Probability (-) φmax maximum fitness
P Double value of chromosome φoff offline fitness
Pmax Maximum double value of chro-

mosome
φon online fitness

Pmin Minimum double value of chro-
mosome

∆P double difference between two
chromosomes

Pc crossover probability (-) λ chromosome length (-)
Pm mutation probability (-) µ constant used for calculating P

e end ν constant used for calculating P

b beginning Σ convergence velocity (-)
PS population size (-) Z integer value of chromosome (-)

γ generation (-)
′

after crossover

γ Number of generations (runs) (-)
′′

after mutation
χ gene of chromosome ⊕ concate

Nomenclature used for the boundary element method

A array spwb begin of the sheet pile wall (m)
B array spwe end of the sheet pile wall (m)
Bt array lc length of the coast (m)

c coastal T transmissivity (m/s)
f(x, y) real function T transpone (matrix algebra)

f fixed ~u vectorfield u
g(x, y) real function u potential (m)
Gij array un = ∂u/∂n , flux
h(x, y) real function w well
Hij array wk weight factor (-)

Ĥij array x first dimension of search area

xii

hij element of H (row i, column j) y second dimension of search area
~i unit vector x axis x

′
x coordinate in local axis system

~j unit vector y axis y
′

y coordinate in local axis system
k number of colums in Bt matrix (-) α angle (rad)
lj length of boundary element (m) β angle (rad)
l arch length (m) ∂ Dirac delta function
ln natural logarithm ε radius (m)
m number of unknown on the coastline

(-)
Γ boundary of surface Ω

n number of colums in A matrix (-) η y coordinate of Q
~n normal vector Θ angle (rad)
nx projection of ~n on the x axis (m) κ number of boundary lines with sea-

water intrusion
ny projection of ~n on the y axis (m) Ω domain
N integer value representing a number

(-)
ξ x coordinate of Q

P (x, y) source point ∇ ∂

∂x
~i+

∂

∂y
~j

Q(x, y) density ∇2 ∂2

∂x2
+

∂2

∂y2

q flow rate (m3/s)
∂

∂n
=

∂

∂x
nx +

∂

∂y
ny

r distance between two points (m) ℘ delta Dirac function for well influ-
ence

s path followed (m) |||| norm (m)
¯ known

Nomenclature discussing the objectives

A array spwb begin of the sheet pile wall (m)
B array spwe end of the sheet pile wall (m)

Used abbreviations

BEM Boundary Element Method FEM Finite Element Method
GA Genetic Algorithm FF Fitness Function
RW Roulette Wheel selection C Constant selection

xiii

Chapter 1

Introduction and objectives

Given a setup of wells that pump fresh water from an aquifer near the coastline, it will be
studied how to increase the total freshwater flow pumped, without the intrusion of saline
water, by using sheet pile walls.

The approach here is not to do field experiments but only to do a theoretical study. This
study will be carried out by using a genetic algorithm that finds the best place for the sheet
pile wall. By placing a sheet pile wall, seawater intrusion is hindered and more fresh water
might be extracted. Interesting questions here are: ’How much more can be pumped by
placing a sheet pile wall?’, ’Where is the optimal location of the sheet pile wall?’ and ’What
is the best solution? Placing a sheet pile wall or installing an extra pump?’. To all these
questions a theoretical solution will be researched.

In order to use a genetic algorithm to compute the optimization by a sheet pile wall, it
is first necessary to find out what is the relation between the total flow pumped and the
seawater intrusion. This relation will be calculated via a boundary element method. A
simple computer algorithm program will be developed that can calculate the seawater inflow
through the coastline border. Given a set of wells (their location and flow) the program will
calculate the flow conditions at the coastal border. If there is inflow of saline water into the
aquifer then the total flow pumped should be lowered. Theoretically, the best solution is
found when there is zero inflow through the coastline.

The algorithm then needs to be extended so that it includes a sheet pile wall. It will then be
possible to compute how much more fresh water can be pumped without having salt intrusion.

Using this algorithm, a genetic algorithm could then be developed to find the best optimization
possible, i.e. the best location and length of the sheet pile wall in combination with the highest
flow extracted. Combining the boundary element method with a genetic algorithm creates
thus a powerful optimization tool. When adequate fitness functions are used it is possible to
find the best combination in a minimum of time.

Three case studies will be made. In the first, the maximum flow pumped will be calculated
without having seawater intrusion. The locations of the wells are constant but the flow
pumped is variable and will be optimized. In the second case a sheet pile wall will be placed
on the coastal border and its influence will be calculated. It will be computed how much flow

1

increase this wall initiated and at what cost. In the third and final case the use of a sheet
pile wall will be optimized. The best possible location and length will be computed, so that
the flow pumped is maximal.

2

Chapter 2

Genetic algorithms

2.1 Genetic algorithms versus traditional solution finding

In this master thesis the traditional way of finding the (optimum) solution for a problem is
left behind. Instead of calculating the solution in the range of all variables, an algorithm will
be used that finds its own way to this (optimum) solution without calculating all the values.

The use of genetic algorithms (GA) became more important over the last few decades. On
the moment of writing this thesis, GAs are not included in the education of civil engineers.
For that reason a brief overview of the used terminology will be given. A lot of GAs might
be developed, from very simple to what is called more complex. The GAs developed in this
thesis are of both kinds and are also generation depended. This means they will change from
generation to generation. GAs are used in a lot of domains but especially here they will be
used to optimize the setup of wells and sheet pile walls.

GAs are mostly used in large solution spaces where calculating all candidate solutions would
take a long time. It offers an alternative that does not need the computation of all candidate
solutions and it is furthermore accepted to be efficient when the space is not perfectly smooth
and unimodal. This means that there is not one (or more) smooth hill(s) where the best
solution could take place. This is the case for both objectives two and three. If it would be
clear beforehand where the solutions are concentrated it is probably not worth a GA. It is
clear that in a homogeneous zone with only one well and very simple dimensions the use of
GAs might be less interesting compared to the traditional approach of calculating the value of
the unknown in a certain amount of points. When on the other hand the zone is divided into
different subzones with their own transmissivity, T , the dimensions are irregular and there is
more than one well, it might be less obvious how to find the best solution.

It should be clear that a genetic algorithm is not the best way to find the absolute optima,
but should be used to find the near absolute optima. When the absolute optima is found the
traditional approach can be used to find the absolute optima.

3

2.2 How do genetic algorithms work: analogy to natural ge-
netics

Implementing GAs is using Darwin’s theory on survival of the fittest to solve real life problems.
The idea is that generation after generation the strongest species have the highest chances
to survive. Each generation starts with a genotype that is selected by chance and that is
modified, also by chance. This will most probably result in a change in its phenotype. Each
generation ends after the phenotype is created. If the newly created chromosome is fitter,
then it’s chances to resist the dangers of its environment are higher. This chromosome is
likely to survive and reproduce. It’s offspring will most probably have this good change as
well and will thus themselves have more chance to survive. They are, what Darwin called,
fitter. Through evolution, the genotype will constantly change, and when to the better it
will have more chances to survive. After a number of generations, called a run, the fittest
genotypes should statistically dominate the less fitter ones which causes the latter to extinct.

Applying this idea to the problem of optimization means that a random population of solutions
is selected and a fitness function is calculated for each one of them. The higher the fitness
value, the higher the survival chances of the solution for the next generation. After a certain
run the best solution is then likely to come forward.

2.3 Chromosomes and the binary system

A change in the genotype is in medical terms a change in the chromosome. Chromosomes are
basic building stones and when some changes takes place in it it will change the genotype.
A chromosome is here defined as a string of digits that represents one of the variables of the
problem. Here, it might be the begin-coordinates of the sheet pile wall, the length of it, or
the inflow in a well.

Chromosomes, although not necessary, will here be represented as a binary string. That is
0’s and 1’s. An example of a chromosome, X1, might then be:

X1 = 10010101001 (2.1)

This binary represents an integer, Z1, and the value is calculated as followed: Starting to
count from the last position of the string towards the beginning:

Z1 = (int)X1 =

λ∑

ι=1

[
(χ(ι)) · 2ι−1

]
(2.2)

Where (int) represents the integer value (in programming terminology this is called casting
the binary) of chromosome X1. λ is the number of digits χ in the chromosome. λ is 11 for
X1. The integer value of X1 is thus:

Z1 = 1193 (2.3)

4

The unknowns in our problem are actually not integers but doubles (double precision). In
order to work with doubles a technique called linear mapping is used. A real number, P , is
transformed from a 10-base integer, Z, which had been transformed from a binary string, X,
calculated before:

P = µZ + υ (2.4)

Z is calculated from X according eq. (2.2). µ and υ depend upon the location and the width
of the space the solution is searched in and they are derived from the minimum and maximum
values of P . Consider for example the sheet pile wall what will be used later on. This sheet
pile wall will start between two real coordinates, Pmin and Pmax on the coastline. For both
points, equation 2.4 can be written:

Pmin = µZmin + υ (2.5)

Pmax = µZmax + υ (2.6)

Keeping in mind that Xmin = 000000... and Xmax = 111111... it is then clear that Zmin = 0
and Zmax = 2λ − 1. In eqs. (2.5) and (2.6) only µ and υ are unknown and can thus be
derived. Their solution yields:

µ =
Pmax − Pmin

2λ − 1
(2.7)

υ = Pmin (2.8)

Knowing this eq. (2.4) becomes:

P =

(
Pmax − Pmin

2λ − 1

)
Z + Pmin (2.9)

When for example the sheet pile wall can have coordinates between 10 m and 150 m, then
X1 would represent the real number P1 as:

P =

(
150− 10

211 − 1

)
· 1193 + 10 = 91.59 (2.10)

The longer X is, the smaller the step between the double value of two chromosomes, ∆P ,
will be. Indeed, eq. (2.9) is not a continuous function and the collection of double values it

5

depicts is not as well. Finding a good value for λ is thus finding a good balance between the
accuracy required and the total calculation time of the GA. When λ is too low the optima
might never be found because it can never be accessed.

The step between two chromosomes, ∆P = Pi − Pi−1, will be the starting point to decide
how long a chromosome should be:

∆P =

(
Pmax − Pmin

2λ − 1

)
(2.11)

For example, when looking for an optimal position of a sheet pile wall between two points on
the coast, A = 0 m and B = 500 m, and the result should at least be precise on one meter
the minimum chromosome length, λmin, is calculated from:

λmin ≥
ln

(
Pmax − Pmin + ∆P

∆P

)

ln 2
,
Pmax − Pmin −∆P

∆P
> 0 (2.12)

When λ = 8, ∆P = 1.96 m and the precision is not yet high enough. For λ = 9, ∆P = 0, 98
m, which then meets the required precision. λmin = 9.

2.4 Operators

2.4.1 Selection

For every chromosome of the population a fitness function will be calculated. Based upon the
individual fitness, and compared to the other fitness of the other chromosomes, a set of new
chromosomes will be selected to go to the next generation.

The algorithm developed can select with three different selecting techniques: Roulette wheel
selection, ranking and selection constant. The general idea of the method is explained. For
the mathematical translation the reader is referred to the code in the back of this writing.

Roulette wheel

Roulette wheel selection is usually compared to the well known roulette game. A wheel is
spun, and the numbered segment in which the ball comes to rest is the winning segment. The
idea here is that the boxes become bigger with increasing fitness. Fitter chromosomes have a
higher chance of being selected and hence to continue to the next round.

Ranking

Using ranking, all chromosomes are ordered according their fitness. The chromosome with
the highest fitness is on the first place and the rest are ranked with descending fitness. From
this list a certain percentage goes to the next generation and the other percentage is refreshed

6

with new chromosomes. This method has the advantage of passing all the best solutions and
inputting new chromosomes during all the generations. Operators like crossover and mutation
(see later) are then only applied on a smaller group, which may result in not fine tuning the
optimum solution.

Tournament selection

A number of chromosomes, KK, is selected with equal probability: 1/PS. From this KK
chromosomes, the fittest chromosome is passed to the next generation. In the first selection
of KK chromosomes the fittest and the less fittest chromosome have equal probabilities of
being selected. It is thus not unlikely that the KK selected chromosomes are not the fittest
at all. This is done PS times so a new phenotype for the next generation is created. This
technique allows less fit chromosomes to pass to the next generation.

2.4.2 Crossover

From one generation to another, chromosomes can crossover. This means that two chromo-
somes split on one place and that one part of the chromosome forms a new chromosome with
another part of the other chromosome. The same happens with the two parts that remain and
hence two new chromosomes have been created. Consider two chromosomes X1 = 10011001
and X2 = 01110011. They have been selected to go to the next generation and in between
the two generations the chromosomes split after the second digit. 4 subchromosomes now
exist: X1,a = 10, X1,b = 011001, X2,a = 01 and X2,b = 110011. Crossover means that X1,a

and X2,b combine and the same happens with X2,a and X1,b, so that two new chromosomes
are created:

X
′
1 = X1,a ⊕X2,b = 10⊕ 110011 = 10110011 (2.13)

X
′
2 = X2,a ⊕X1,b = 01⊕ 011001 = 01011001 (2.14)

The ⊕ represents the concatenation of two subchromosomes and X
′
1 and X

′
2 are the two new

chromosomes. In the algorithm developed later on, the string length for every variable is fixed
through the generations and trials. Therefore, the place where the chromosomes are split is
the same for both chromosomes. Doing so the newly generated chromosomes will always have
the same length. When the length of the chromosomes would vary it would mean that the
precision obtained would vary as well.

Splitting the chromosome can take place after the first binary and before the last. Thus,
chromosome X1 could be broken after the first until the seventh binary. This means there
are λ − 1 possible break open positions. Crossover is applied to create new chromosomes
and allow the generation of new chromosomes with, hopefully, a higher fitness and chance to
survive than their parents.

7

The probability that crossover takes place is called the crossover probability, Pc. The higher
Pc the more new chromosomes will be generated and more of the search space will be explored.
Highly exploring the search space can give an answer to premature convergence, but over-
exploring might also result in losing the (absolute) optimal solution again. A solution for this
could be to store the fittest chromosome, this technique is called elitism and will be discussed
later. Another approach is to change Pc during the generations. The algorithm developed
allows to work with a linear crossover probability, Pc(γ):

Pc(γ) =
γe − γ
γe − γb

(Pc,e − Pc,b) (2.15)

Pc(γ) is function of the generation it is in. Pc,e is the crossover probability in the last (end)
generation, γe, and Pc,b in the first (begin) generation, γb. Pc(γ) usually starts at a high
value, to allow a a lot of different chromosomes to be created and towards the end of the run
Pc is lowered so that the part of the search space with the, hopefully, optimum solution is
further explored.

2.4.3 Mutation

Mutation happens in one chromosome and changes one of the chromosome’s genes: a 1
will become a 0 and the other way around. The object is to further explore the search
space. Consider a chromosome X3 = 10010011 that is mutated in its second gene. The new
chromosome X

′′
3 = 11010011 will now represent a totally different double value. This new

chromosome might be in an area of the search space that was never searched in so far. In the
last generation, crossover might not result in a new solution that is fitter. As an example,
consider two chromosomes in the second last generation: X4 = 10001100 and X5 = 10001100.
During the previous generations the fittest chromosomes survived and the population might
thus exist of identical chromosomes, that are as fit. Crossing over X4 and X5 will thus not
result in new information. If on the other hand, the chromosome is mutated a totally new
chromosome will be generated.

The mutation probability, Pm, is usually chosen to be
1

λ
. The algorithm used in this master’s

thesis allows the user to use a fixed Pm as well as a linear changing Pm(γ). The general idea
is the same as described in subsection (2.4.2).

2.4.4 Antimetathesis

Anti metathesis was first proposed by Katsifarakis and Karpouzos [23] and can be used here
as well. The probability with which antimetathesis takes place, Pf , is usually taken to be the
same as Pm. When a gene of the chromosome is selected, its value will be changed from 1 to
0 or from 0 to 1, just as with mutation. Next to that the next gene is changed as well, based
upon the new value of the selected gene. If the gene was changed to a 0, then the next gene
will be a 1 and vice versa. Four possibilities exist: 1) 00 → 10, 2) 01 → 10, 3) 10 → 01, 4)
11→ 01.

8

The reasoning why to do this is explained with the following simple example. Suppose the
exact solution is represented by the chromosome 1101 and that a very fit chromosome 1110
was found. Mutation can never lead to the exact chromosome but using antimetathesis the
solution is found when the third gene was selected.

Antimetathesis and mutation are suggested to take place interchangingly.

2.4.5 Elitism

By applying selection, crossover and mutation it could be that the fittest solution disappears
from the population again. Therefore the algorithm is equipped with a memory for the fittest
chromosome. Before selection takes place, the fittest chromosome is stored and after all the
operators took place it is added again to the population. In this way, the fittest chromosome
can never disappear. This technique is called elitism. When elitism is used in this text it will
be indicated by ε = 1 and if not by ε = 0.

2.5 A simple example

The idea of genetic algorithms might look abstract, but in fact it is a very logical approach.
In a simple example, using selection, crossover and mutation, it is shown how things work.

In the example a population size, PS, of 4 chromosomes is considered. Every population thus
has 4 chromosomes of which the chromosome length λ is chosen to be 4. The chromosome
representation is binary. There will be three generations and the crossover probability Pc is
constant over all generations and is 0.8. The last given is the mutation probability what is as

suggested 0.25, calculated as
1

PS
.

The following happens, at random a first generation is created, each chromosome having the
same probability:

γ(0) =

X1 = 0010

X2 = 1010

X3 = 1101

X4 = 0101

(2.16)

For all the chromosomes in the population, their fitness should be calculated. Consider the
following fitness function Φ that equals the number of 1’s in the chromosome. The fitness of
the chromosomes is thus:

Φ(γ(0)) =

Φ(X1) = 1

Φ(X2) = 2

Φ(X3) = 3

Φ(X4) = 2

(2.17)

9

Using, for example roulette wheel selection, the individual probability, P , of a chromosome
going to the next generation (survival of the fittest!) is thus:

P (γ(0)) =

P (X1) = 1/8 = 0.125

P (X2) = 2/8 = 0.250

P (X3) = 3/8 = 0.375

P (X4) = 2/8 = 0.250

(2.18)

γ(1) might then look like:

γ(1) =

X1 = 1101

X2 = 1010

X3 = 0101

X4 = 0101

(2.19)

By chance, the less fit solution has left the population, and was replaced by the fittest chro-
mosome. Selecting again would probably result in another group of chromosomes. On this
generation crossover is applied. Chromosomes X1 and X4 are selected by chance and crossover
will take place (Pc = 0.8). The chromosomes split up after the third gene. The place where
the chromosomes are split is also decided with equal probability. 4 chromosomes now exist:
X1,a = 110, X1,b = 1, X4,a = 010 and X4,b = 1. Recombining gives us two new chromosomes:
X
′
1 = 1101 and X

′
2 = 0101. In this notation the

′
indicates the situation after crossover. Two

more chromosomes need to be selected to have a fully populated population. Again by chance
X2 and X3 were selected and crossed over after the first binary. The new chromosomes are
thus X

′
3 = 1101 and X

′
4 = 0010. The population now looks like this:

γ(1)
′

=

X
′
1 = 1101

X
′
2 = 0101

X
′
3 = 1101

X
′
4 = 0010

(2.20)

After crossover took place the chromosomes are mutated. The mutation probability is 0.25
and as a result only chromosome X

′
4 is mutated (binary is changed) in the second gene. The

new chromosome is thus X
′′
4 = 0110. Where the

′′
indicates the chromosome after mutation

took place, the situation is now:

γ(1)
′′

=

X
′′
1 = 1101

X
′′
2 = 0101

X
′′
3 = 1101

X
′′
4 = 0110

(2.21)

10

Using selection, crossover and mutation has increased the total fitness from the generation
from 8 to 10, and there are now 2 chromosomes that already have a fitness of 3. Repeating the
selecting, crossover and mutation operators, will thus statistically improve the overall fitness
and the individual fitness. The last generation might look like this:

γ(3)
′′

=

X
′′
1 = 1101

X
′′
2 = 1101

X
′′
3 = 1111

X
′′
4 = 0111

(2.22)

It is thus clear that the maximum fitness, and thus the optimal solution, was found for
chromosome X3. If the number of runs would even be much bigger, then all chromosomes
would evolve to become 1111. Although it must be mentioned that because of the mutation
that takes place a chromosome with lower fitness might always occur in the population.

2.6 Test functions

Test functions are used to monitor the genetic algorithm and see how well it is performing.
A lot of the test functions are available, some of them are more interesting than others. In
what follows some of test functions are defined. They are implemented in the algorithm as
well and will be used later in the case study.

2.6.1 ϕmax as function of γ

A graph of ϕmax as function of γ tells us if the algorithm has trouble finding better candidate
solutions. If so it might be worth it to enlarge the population size PS, or choose another
fitness function.

2.6.2 Off and on-line performance

The off-line performance, ϕoff , shows the evolution of the average of the fitness of the best
individual, ϕmax, during the run, γ.

ϕoff (γ) =
1

γ

γ∑

i=1

ϕmax(i) (2.23)

The on-line performance, ϕon, gives the evolution of the average of all fitness functions ϕi
during the run:

ϕon(γ) =
1

γ

γ∑

j=1

ϕave(γ) =
1

γ

γ∑

j=1

[
1

PS

PS∑

i=1

ϕi(j)

]
(2.24)

11

2.6.3 Convergence velocity

This parameter shows if the GA made a lot of progress. Σ is called the convergence velocity.
Γ is the last run.

Σ = ln

√
ϕmax(γ = Γ)

ϕmax(γ = 0)
(2.25)

Because the algorithm is capable of working with both negative and positive fitness functions,
a negative value might be passed to the ln function. To avoid this problem ϕmax(γ = 0) is
set to a fixed value of one. The fitness added to do so is then also added to γ = Γ.

2.6.4 The run with maximum fitness

Gmax is a parameter that stores during which generation the maximum fitness was obtained.
Gmax keeps track of the generation when the fittest solution was found. When elitism is used
the fitness has to increase or remain at least the same from one generation to another. When
elitism is not used, the fittest chromosome might disappear out of the population and the end
solution might be less fit.

For example, the algorithm might be executed 100 times, with a number of generations of 50.
When for all trials the optimum solution is found after maximum 15 generations, it is then
clear that 15 is the number of trials needed to find the optimum. 35 trials are not needed
anymore which reduces the calculation time.

12

Chapter 3

Boundary element method

3.1 Introduction

3.1.1 In this chapter

This chapter explains what the boundary element method is and why it is a good method
for the objectives dealt within this writing. Before the mathematical formulation of the
boundary element method is given, a few important aspects of the mathematical background
are explained. The steps necessary to go from the mathematic formulation to the numerical
implementation are also explained. The derived formula are only applicable for the boundary
elements used in this thesis, which are constant boundary elements. The reader will thus find
out step by step, how the method is built.

From the general method the extensions are made to include wells (point sources, which is
very straight forward) and the implementation of a sheet pile wall (which requires some more
work, since extra boundary elements can be created and existing elements might change). A
section will deal with reducing the calculation time/load and a simple example will try to
make things even more clear.

3.1.2 What is the boundary element method

Wikipedia describes the boundary element method as [22]: ’(...) a numerical computational
method of solving linear partial differential equations which have been formulated as integral
equations (i.e. in boundary integral form). It can be applied in many areas of engineering and
science including fluid mechanics, acoustics, electromagnetics, and fracture mechanics. (...)’

In simpler words it means that this method solves the Laplace (or Poisson) equation (the
linear partial differential equation) where only input data is required on the boundary of the
domain and therefore called boundary integral form. Solving this integral equation is done
by discretizing the boundary and calculating the integrals in a numeric, rather than analytic
way.

A lot of books are available concerning the basic principles of the boundary element method
[1, 4, 5, 6] and also the website http://www.iam.uni-stuttgart.de/bem[15] gives a good

13

http://www.iam.uni-stuttgart.de/bem

introduction to the boundary element method. However for every specific problem these basic
principles need to be extended.

3.1.3 Why the boundary element method? - Comparison to FEM

Other techniques, such as the finite element method (FEM), can be used instead of the
boundary element method (BEM) that will be used here.

In a work, published by Donea and Huerta, on the use of finite element method for flow prob-
lems and the course manual Eindige elementen methode[2] (finite element method) written
by professor Verhegge from Ghent University both provide the reader with more information
about the use of the finite element method.

In this section the advantages of the BEM over the FEM are explained and as a result it will
be clear that the use of the BEM is indeed a very good choice for the challenges that lay
ahead.

Advantages

The biggest advantage of the BEM over the FEM is that no discretization of the inside domain
is required, only the boundary of the domain should be discretizised. Thus, compared to the
FEM, less equations and input data is needed. When the conditions at the domain boundary,
called the boundary conditions, are known, the condition in any point in the domain can be
calculated from the solution yielded for the boundary nodes.

The BEM is effective in computing the derivatives of the field function. When using the
FEM, the accuracy drops, especially in areas or large gradients. Furthermore it is very easy
to implement wells (concentrated force).

In my personal opinion, I also think the BEM method is easier to learn.

Disadvantages

The method requires that fundamental solution is known. There is no problem concerning
the fundamental solution because the cases studied are always linear and the coefficients of
the differential equation are constant. Superposition is thus at all times valid, and will be
used to add to the wells.

A disadvantage of the Boundary element method is the fully populated and non-symmetric
coefficient matrices of the linear algebraic equations that are produced. The FEM works with
symmetric and not fully populated matrices, but the size of the matrices is bigger. Since most
of the boundary elements remain unchanged during all generations, only parts of the fully
populated matrices will be recalculated. This disadvantage will therefore disappear.

3.2 Mathematical background

To understand the theory of the boundary element method four mathematical concepts need
to be explained. They are explained here and will be used in the next section. In this section

14

also a fundamental solution will be derived that will as well be used in the next section.

3.2.1 The Gauss-Green theorem

This theorem is essential for the boundary element method. Using this theorem it becomes
possible to go from a domain integral to a boundary integral. The domain in the algorithm
that will be developed later on is a 2D model. As explained before, good information is
available about the 3D model as well, but only what is necessary for the boundary element
developed later on will be discussed. The domain, Ω, thus only has two dimensions (x and
y). Γ is defined as the boundary of Ω and in the domain a function f = f(x, y) is valid. Fig.
(3.1) depicts the composition. The integral of the derivative of f in respect to x over the
domain Ω is noted as:

∫

Ω

∂f

∂x
dΩ (3.1)

Because the boundary of the domain is known, eq. (3.1) can be written as a function of it’s
variables x and y. More precisely, the surface integral can be written as a double integral.
For example first with respect to x = f(y) and then with respect to y:

∫

Ω

∂f

∂x
dΩ =

y2∫

y1

x2(y)∫

x1(y)

∂f

∂x
dx dy =

y2∫

y1

(f(x2, y)− f(x1, y)) dy (3.2)

Figure (3.1) show that for every y1 and y2 the total boundary Γ is formed by two curves
from s1 and s2. Furthermore the following relationship is clear, where s is measured in a
counter-clockwise sense:

cosα =
dy

ds
=

nx
||−→n || ⇒ dy = nx ds (3.3)

Eq. (3.2) can thus be expressed as a function of ds, where ~n is the outward normal on Γ,
and nx its component according to the x-dimension:

y2∫

y1

(f(x2, y)− f(x1, y)) dy =

∫

s2

f(x2, y)nx ds+

∫

s1

f(x1, y)nx ds (3.4)

The plus sign in the last term of eq. (3.4) is there because s1 goes from y2 to y1. Turning the
sense turns the sign. s1 and s2 together form Γ and thus can be written for s counter-clockwise
over the entire of Γ:

∫

Ω

∂f

∂x
dΩ =

∫

Γ

f(x, y)nx ds (3.5)

15

xxdxx

y

y

dy

y

j

i

Γ

dΩ

+s

s1

s2

ds

ds
dx

dy

nt

α

Figure 3.1: Domain Ω with boundary Γ

In a similar way the following equation can be derived, where ny is the component of ~n along
the y-dimension:

∫

Ω

∂f

∂y
dΩ =

∫

Γ

f(x, y)ny ds (3.6)

Equation. (3.5) for the function fg, where both f and g are function of x and y is then:

∫

Ω

∂(fg)

∂x
dΩ =

∫

Γ

(fg)nx ds

=

∫

Ω

g
∂f

∂x
dΩ +

∫

Ω

f
∂g

∂x
dΩ

(3.7)

And thus:

∫

Ω

g
∂f

∂x
dΩ =

∫

Γ

(fg)nx ds−
∫

Ω

f
∂g

∂x
dΩ (3.8)

In an analogue way the relation for the partial of y is found:

∫

Ω

g
∂f

∂y
dΩ =

∫

Γ

(fg)ny ds−
∫

Ω

f
∂g

∂y
dΩ (3.9)

The integration by parts is called the Gauss-Green theorem.

16

3.2.2 The divergence theorem of Gauss

A vector field ~u is considered in the two dimensional space (x and y), with bound vectors ~i
along the x- and ~j along the y-dimension. This ~u is thus composed out of two vectors u ·~i
and v · ~j. u(x, y) and v(x, y) are the magnitude (scalar) of the vector. This vector field is
notated as:

~u = u(x, y)~i+ v(x, y)~j = (u, v) (3.10)

The normal ~n can be written as well in that same space as:

~n = nx~i+ ny~j = (nx, ny) (3.11)

When in eq. (3.5) f = u and in eq. (3.6) f = v is substituted and they are added together
the following equation is yielded:

∫

Ω

∂u

∂x
dΩ +

∫

Ω

∂v

∂y
dΩ =

∫

Ω

(
∂u

∂x
+
∂v

∂y

)
dΩ =

∫

Γ

(unx + vny) ds (3.12)

The last term in eq. (3.12) can be written in vector notation:

∫

Ω

∂u

∂x
dΩ +

∫

Ω

∂v

∂y
dΩ =

∫

Γ

~u · ~n ds (3.13)

Introducing the vector ∇ defined as:

∇ =
∂

∂x
~i+

∂

∂y
~j (3.14)

equation (3.12) can be notated as:

∫

Ω

∇ · ~u dΩ =

∫

Γ

~u · ~n ds (3.15)

The · represents the dot product. ∇ · ~u is called the divergence of a vector field ~u inside Ω
and thus the name of the theorem.

17

3.2.3 Green’s second identity

Consider eq. (3.8) where f =
∂u

∂x
and g = v and eq. (3.9) where f =

∂u

∂y
and g = v. v and u

are both function of x and y and are defined to be twice continuously differentiable in Ω and
once on Γ:

∫

Ω

v
∂2u

∂x2
dΩ =

∫

Γ

v
∂u

∂x
nx ds−

∫

Ω

∂u

∂x

∂v

∂x
dΩ (3.16)

∫

Ω

v
∂2u

∂y2
dΩ =

∫

Γ

v
∂u

∂y
ny ds−

∫

Ω

∂u

∂y

∂v

∂y
dΩ (3.17)

Adding eq. (3.16) to eq. (3.17):

∫

Ω

v

(
∂2u

∂x2
+
∂2u

∂y2

)
dΩ =

∫

Γ

v

(
∂u

∂x
nx +

∂u

∂y
ny

)
ds−

∫

Ω

(
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

)
dΩ (3.18)

Doing the same for eq. (3.8) where f =
∂v

∂x
and g = u added by eq. (3.9) where f =

∂v

∂y
, a

similar equation as 3.18 is obtained:

∫

Ω

u

(
∂2v

∂x2
+
∂2v

∂y2

)
dΩ =

∫

Γ

u

(
∂v

∂x
nx +

∂v

∂y
ny

)
ds−

∫

Ω

(
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

)
dΩ (3.19)

Subtracting eq. (3.19) from eq. (3.18):

∫

Ω

[
v

(
∂2u

∂x2
+
∂2u

∂y2

)
− u

(
∂2v

∂x2
+
∂2v

∂y2

)]
dΩ =

∫

Γ

[
v

(
∂u

∂x
nx +

∂u

∂y
ny

)
− u

(
∂v

∂x
nx +

∂v

∂y
ny

)]
ds

(3.20)

With the following definitions:

∇2 = ∇ · ∇ =

(
∂

∂x
~i+

∂

∂y
~j

)
·
(
∂

∂x
~i+

∂

∂y
~j

)
=

∂2

∂x2
+

∂2

∂y2
(3.21)

And
∂

∂n
defined as:

∂

∂n
= ~n · ∇ = (nx~i+ ny~j) ·

(
∂

∂x
~i+

∂

∂y
~j

)
=

∂

∂x
nx +

∂

∂y
ny (3.22)

18

Equation (3.20) can be written in vector notation as:

∫

Ω

(v∇2u− u∇2v) dΩ =

∫

Γ

(
v
∂u

∂n
− u∂v

∂n

)
ds (3.23)

∇2 is called the Laplace operator or the harmonic operator and eq. (3.23) as Greens’ reciprocal
identity or Greens’ second identity for the harmonic operator. This is probably the most
important formula of the boundary element method.

3.2.4 The Dirac delta function

For the use in the application that will be developed further, a two dimensional Dirac delta
function is needed. The two dimensional Dirac delta function, δ(Q−Q0) is defined as:

∫

Ω

δ(Q−Q0)h(Q) dΩ = h(Q0) (3.24)

In eq. (3.24) Q and Q0 are both functions of x and y and they are located in Ω. h(Q) is
a continuous function in Ω and contains the point Q0. Q0 has fixed coordinates x0 and y0.
Going through Ω only one point of the domain, Q0, will lead to an increment of the integral.
For all other points a 0 influence is applicable. This can also be written as:

δ(Q−Q0) =

{
0, Q 6= Q0

∞, Q = Q0

(3.25)

And when h(Q) = 1:

∫

Ω

δ(Q−Q0) dΩ = 1 (3.26)

3.2.5 The fundamental solution

The density of a source point P at a point Q is defined as:

f(Q) = δ(Q− P) (3.27)

and its potential v(Q,P) satisfies:

∇2v = δ(Q− P) (3.28)

19

In what follows a solution of eq. (3.28) will be derived so that it is a fundamental solution of
∇2 = 0. To do so, eq. (3.28) is written in polar coordinates where the origin is at point P :

1

r

d

dr

(
r

dv

dr

)
= δ(Q− P) (3.29)

where:

r =
√

(ξ − x)2 + (η − y)2 (3.30)

(x, y) are the coordinates of P and (ξ, η) the coordinates of Q. The situation is depicted in
fig. (3.2)

P(x,y)

n

(Ω)
Γ

�(ξ,η)

Ѳ

Figure 3.2: Density Q(ξ, η) from source point P (x, y)

According to the definition of the Dirac delta function, its value is 0 for all positions where
Q 6= P and ∞ when Q = P . For all r 6= 0, δ(Q− P) = 0 and eq. (3.29) is:

1

r

d

dr

(
r

dv

dr

)
= 0 (3.31)

For this equation a lot of solutions exist. Integrating twice gives:

v = A ln r +B (3.32)

One particular solution is found by setting B = 0:

v = A ln r (3.33)

20

The value of A can be determined noticing that:

∂v

∂r
=
∂v

∂n
=
A

r
(3.34)

Furthermore, from fig. (3.2), ds = r dΘ. Applying Green’s identity for u = 1 and v = A ln r:

−
∫

Ω

∇2v dΩ =

∫

Γ

∂v

∂n
ds (3.35)

Ω is the circle with center point P and radius r as depicted in fig. (3.2). ∇2 is known from

eq. (3.28) and
∂v

∂r
from eq. (3.34) and thus:

−
∫

Ω

δ(Q− P) dΩ =

2π∫

0

A dΘ (3.36)

From this, with equation (3.26):

1 = 2πA⇒ A =
1

2π
(3.37)

The fundamental solution, v, is thus:

v =
1

2π
ln r (3.38)

This solution is called the free space Green’s function.

3.3 Mathematical formulation of the boundary element method

3.3.1 Homogeneous equation

As mentioned before, solving the Laplace equation results in the solution for the problem
where no point sources are applicable.

∇2u = 0
yields→ u(x, y) (3.39)

Consider now the following functions u and v that meet the conditions:

∇2u = 0 (3.40)

21

and

∇2v = δ(Q− P) (3.41)

Eq. (3.41) was derived in section (3.2.5) and expresses the potential of a source point P at a
point Q. Applying Green’s identity (eq. (3.23)), where P lies inside Ω:

∫

Ω

(v · 0− u · δ(Q− P)) dΩ = −
∫

Ω

(u · δ(Q− P)) dΩ =

∫

Γ

(
v
∂u

∂n
− u∂v

∂n

)
ds (3.42)

Using formula (3.24):

u(P) = −
∫

Γ

(
v
∂u

∂n
− u∂v

∂n

)
ds (3.43)

This equation is called the integral representation of the solution for the Laplace equation and
is valid when P is inside Ω. The value of v, that is the fundamental solution of the Laplace

equation, is known from section (3.2.5). The derivative
∂v

∂n
becomes clear from figure (3.3):

ø = β - α

β
α

α

x”

x’

n

t

P(x,y)

q(ξ,η)

Л/2

r = �q - P �

x

y

Figure 3.3: Derivative r to n

First the two following geometric relations are clear:

cosα =
ξ − x
r

(3.44)

22

sinα =
η − y
r

(3.45)

r is the length between P and Q:

r =
√

(ξ − x)2 + (η − y)2 (3.46)

Differentiating to x, resp y gives, and keeping in mind that when x and y increase ξ and η
decrease:

dr

dx
= − dr

dξ
= −ξ − x

r
= − cosα (3.47)

dr

dy
= − dr

dη
= −η − y

r
= − sinα (3.48)

Furthermore the relation to the outward normal on Γ can be deducted:

cosβ =
nx
1

= nx (3.49)

sinβ =
ny
1

= ny (3.50)

Knowing this the derivative of r with respect to n can be calculated:

dr

dn
=

dr

dξ
nx +

dr

dη
ny

=
dr

dξ
cosβ +

dr

dη
sinβ

= cosα cosβ + sinα sinβ

= cos(β − α)

= cosφ

(3.51)

And thus the derivative of (3.38) with respect to n is:

dv

dn
=

1

2π

cosφ

r
(3.52)

23

The integral representation also needs to be calculated for points P that are on Γ. To do
so the approach is to start with a point P that is outside the domain and let the domain
approach P . In the limit situation the domain will touch P and the later will thus be on the
boundary. This situation is given in figure (3.4). The shortest distance possible between P
and Ω∗ is ε = r. Ω∗ is the part of Ω minus the part of Ω that belongs to the circle with center
point in P and radius ε. It is clear that indeed, if ε approaches 0, that the domain approaches
the point P , and eventually, when ε = 0, P is on Γ. The total length of the arcs AP and
PB is defined as l and the arch AB is defined as Γε. Because of the circular boundary, the
outward normal on Γε is always pointed towards P and thus collides with the radius.

Γ

(Ω*)

+s

+s

q

n

BѲ

Ѳ1

Ѳ2

P

A
α

Γε

ε

x

Figure 3.4: P outside of the domain

Writing once again Green’s identity but now for the domain Ω∗, where u and v satisfy con-
ditions (3.40) and (3.41):

∫

Ω∗

(v · 0− u · 0) dΩ = 0 =

∫

Γ

(
v
∂u

∂n
− u∂v

∂n

)
ds (3.53)

Indeed, according to the definition of the Dirac delta function, δ(Q − P) = 0 where P is

24

outside of Ω∗. Γ can be devided in two pieces: Γ− l and Γε and eq. (3.53) is thus:

0 =

∫

Γ−l

(
v
∂u

∂n
− u∂v

∂n

)
ds+

∫

Γε

(
v
∂u

∂n
− u∂v

∂n

)
ds (3.54)

The situation of interest is when ε approaches 0. The first integral is simple:

lim
ε→0

∫

Γ−l

(
v
∂u

∂n
− u∂v

∂n

)
ds =

∫

Γ

(
v
∂u

∂n
− u∂v

∂n

)
ds (3.55)

Because, from figure (3.4), it is clear that:

lim
ε→0

(Γ− l) = Γ (3.56)

The second integral of equation (3.54) is in the case where α = π is also straightforward. v
and dv/ dn are known from eqs. (3.38) and (3.52) resp., and hence:

lim
ε→0

∫

Γε

(
v
∂u

∂n
− u∂v

∂n

)
ds = lim

ε→0

∫

Γε

(
ln r

2π

∂u

∂n
− ucosφ

2πr

)
ds (3.57)

Because ds = −r dφ and s over Γε is always known when r = ε is known, because under all
situations φ = π. The last integral is thus reduced to:

lim
ε→0

∫

Γ

(
v
∂u

∂n
− u∂v

∂n

)
ds = lim

ε→0

(
ln ε

2π

∂u

∂n
− ucosπ

2πε

)
(πε)

= lim
ε→0

(
0− u−1

2πε

)
(πε)

=
1

2
u(P)

(3.58)

Knowing how the two integrals of eq. (3.54) evolve in the limit state to 0, the total limit is
thus:

0 =

∫

Γ

(
v
∂u

∂n
− u∂v

∂n

)
ds+

1

2
u(P)⇒ 1

2
u(P) = −

∫

Γ

(
v
∂u

∂n
− u∂v

∂n

)
ds (3.59)

This equation is valid for source points P on the boundary of the domain, and when the
boundary element is smooth (α = π). This equation is called the boundary integral equation.

25

When at every point of the boundary u or un is known, the correspondening un or u can be
found using this compatibility relation. As mentioned above, when P is outside Ω, δ(Q− P)
is always zero for all possible Q’s in Ω and thus:

−
∫

Ω

(u · δ(Q− P)) dΩ = 0 =

∫

Γ

(
v
∂u

∂n
− u∂v

∂n

)
ds (3.60)

Three possible locations for P can thus occur:

1. P is inside Ω: eq. (3.43) is valid

2. P is on the boundary of Ω: eq. (3.59) is valid

3. P is outside of Ω: eq. (3.60) is valid

These three different situations can be written in one equation as:

ε(P)u(P) = −
∫

Γ

(
v
∂u

∂n
− u∂v

∂n

)
ds (3.61)

Where:

ε(P) =

1 when P inside the Ω
1

2
when P on Γ

0 when P outside Ω

(3.62)

In the case of our mixed problem the following equations thus needs to be calculated:

1

2
ū = −

∫

Γ

(
v
∂u

∂n
− ū ∂v

∂n

)
ds on Γ1 (3.63)

1

2
u = −

∫

Γ

(
v
∂ū

∂n
− u∂v

∂n

)
ds on Γ2 (3.64)

Where Γ1 is the part of Γ where u is known, Γ2 where
du

dn
is known and Γ1 + Γ2 = Γ.

26

3.3.2 Non homogeneous equation

When a well is added, as later on will be the case, ∇2 6= 0. The Laplace equation is not valid
anymore and a Poisson equation now describes the problem:

∇2u = f in Ω (3.65)

In this equation f is a function of x and y. Its value will later be discussed. In the following
few lines it will be proven that the solution of equation (3.65) can be written as a sum of
the solution u0 of a homogeneous equation (∇2u0) and a particular solution u1 of the non
homogeneous equation (∇2u1):

u = u0 + u1 (3.66)

The easiest way to prove this is by applying Green’s identity where ∇2u = f (eq. 3.65) and
∇2v = δ(Q− P) (eq. (3.28)):

∫

Ω

v · f − u · δ(Q− P)) dΩ =

∫

Γ

(
v
∂u

∂n
− u∂v

∂n

)
ds (3.67)

The second term from the left side of the equation is known from eq. (3.24), and for a smooth
boundary (analogue to eq. (3.61):

1

2
u(P) =

∫

Ω

(v · f dΩ−
∫

Γ

(
v
∂u

∂n
− u∂v

∂n

)
ds (3.68)

The last part is exactly the solution of the homogeneous equation, and thus
∫
Ω

v · f dΩ is the

solution of the non homogeneous solution:

u0 =

∫

Γ

(
v
∂u

∂n
− u∂v

∂n

)
ds (3.69)

u1 =

∫

Ω

v · f dΩ (3.70)

For a mixed problem, as is considered, the boundary conditions of the homogeneous are:

ū = u0 + u1 (3.71)

δ̄u

δn
=
δu0

δn
+
δu1

δn
(3.72)

27

3.4 Numeric formulation

3.4.1 Discretization

From the previous chapter the analytical solution for the problem was obtained. For all
boundary elements an equation similar to equation (3.61) can be written. It is the solution
of the Laplace equation at that point pi and is given by:

1

2
u(pi) = −

∫

Γ

[
v(pi, q)

∂u(q)

∂nq
− u(q)

∂v(pi, q)

∂nq

]
dsq (3.73)

This equation is valid only for constant line elements and will be used as the basic equation for
the model. This equation now needs to be discretized so it can later be computed. Therefore
Γ is divided into smaller pieces that all together form Γ again, this is shown in fig. (3.5).

nodes

end point

node

end point
element

Figure 3.5: The use of constant line elements

For a point pi, with ui the value of u in point i, and un = ∂u/∂n, equation (3.73) can be
written as:

1

2
ui = −

N∑

j=1

∫

Γj

v(pi, q)
∂u(q)

∂nq
dsq +

N∑

j=1

∫

Γj

u(q)
∂v(pi, q)

∂nq
dsq (3.74)

assuming that Γ is discretized in N parts. Figure (3.6) shows the situation.

28

i -element

j -element

P(x,y)
Pi(xi,yi)

riq=�q-pi�

rPq=�q-P�

j +
j +

j -

pj-

pj+

q

j
pj

Figure 3.6: Nodal points p, q and P

Because only constant elements are to be used, u and un can be moved outside the integral,
after placing all terms of ui and uj on the left hand side eq. (3.74) becomes:

−1

2
ui +

N∑

j=1

(∫

Γj

∂v(pi, q)

∂nq
dsq

)
uj =

N∑

j=1

(∫

Γj

v(pi, q)dsq

)
ujn (3.75)

Equation (3.75) can further be formulated as:

N∑

j=1

Hiju
j =

N∑

j=1

Giju
j
n (3.76)

Where:

Gij =

∫

Γj

v(pi, q)dsq (3.77)

Hij = Ĥi,j −
1

2
δij (3.78)

29

Ĥij =

∫

Γj

∂v(pi, q)

∂nq
dsq (3.79)

δij is the delta Kronecker function and is always 0 except when (i = j), it then has the value
of 1. Equation (3.76) is now almost ready to be computed, only Ĥij and Gij are still in their
analytic shape and should be discretized.

3.4.2 Hij and Gij

Hi,j and Gi,j are evaluated for two different situations. A first is when i = j, and when the
distance between source point and destination point is zero, called the diagonal elements and
a second case where there is distance between the source and destination point: when i 6= j,
called the off-diagonal elements.

Off-diagonal elements

The integrals are evaluated using Gauss Iteration. Doing so it is possible to approximate an
integral as a summation:

1∫

−1

f(ξ) dξ ≈
n∑

k=1

f(ξk)wk (3.80)

In the algorithm developed 4 integration points will be used (n = 4). The values of the
abscissas ξk and the corresponding weight factor wk are listed in table (3.1).

ξk wk
−0.861136311594053 +0.347854845137454
−0.339981043584856 +0.652145154862546
+0.339981043584856 +0.652145154862546
+0.861136311594053 +0.347854845137454

Table 3.1: 4 point Gauss integration - Abscissas and weights

In order to be able to use equation (3.80), x and y should be known as function of ξ. The
approach is to start from a local system with axes x

′
and y

′
as depicted in figure (3.7).

Depicted is an element j. It’s two endpoints are j(xj , yj) and (j + 1)(xj+1, yj+1). Element j
in the local system (x

′
, y
′
) is described by:

j(x
′
, y
′
) = (x

′
, 0), Where − lj

2
≤ x′ ≤ lj

2
(3.81)

30

And the relation between the local and the global system is thus:

x =
xj+1 + xj

2
+
xj+1 − xj

lj
x
′

(3.82)

y =
yj+1 + yj

2
+
yj+1 − yj

lj
x
′
, − lj

2
≤ x′ ≤ lj

2
(3.83)

lj is the length of the element (distance between begin and endpoint) and equals:

lj =
√

(xj+1 − xj)2 + (yj+1 − yj)2 (3.84)

In the local system, x
′

varies from 0 to ± lj
2

(the local system has its origin in the middle of

element j) and ξ varies from 0 to ±1, so the relation between x
′

and ξ is the following:

ξ =
2x
′

lj
(3.85)

Equations (3.82) and (3.82) can now be written as function of ξ:

x(ξ) =
xj+1 + xj

2
+
xj+1 − xj

2
ξ (3.86)

y(ξ) =
yj+1 + yj

2
+
yj+1 − yj

2
ξ (3.87)

The only thing missing is the relation between s and ξ, but it is also clear from fig. (3.6):

ds =
√

dx2 + dy2 =

√(
xj+1 − xj

2

)2

+

(
yj+1 − yj

2

)2

dξ =
lj
2

dξ (3.88)

31

x

y

pi
α

j -element

i -element

O

r

n

pj

ø

jy’

j +

ξ= -

ξ= +

x’= ξ

q(x,y)

Figure 3.7: Global and local coordinate system

Eq. 3.77 can now be written as:

Gij =

∫

Γj

v(pi, q)dsq =

∫

Γj

1

2π
ln[r(ξ)]

lj
2

dξ =
lj
4π

n∑

k=1

ln [r(ξk)]wk (3.89)

Where:

r(ξk) =

√
(x(ξk)− xi)2 + (y(ξk)− yi)2 (3.90)

For the off-diagonal elements of Hi,j , the relation between s and α is required. From fig(3.8):

ds cosφ = r dα⇒ ds =
r dα

cosφ
(3.91)

Combining eq. (3.51) and 3.91:

Ĥij =

∫

Γj

∂v

∂n
ds =

∫

Γj

1

2π

cosφ

r
ds =

∫

Γj

1

2π
dα =

aj+1 − aj
2π

(3.92)

Where:

aj+1 = arctan

(
yj+1 − yi
xj+1 − xi

)
(3.93)

32

j + rdα
ø

ø

ds j -element

j

α

dα

αj+

r

n

pi

a j

Figure 3.8: Relation between α and s

aj = arctan

(
yj − yi
xj − xi

)
(3.94)

Diagonal elements

When i = j, the source and destination element are the same. This means that r is always on
the line element and r is the distance from the center point to the point on the line element.

For the mathematical formulation it is clear that φ =
π

2
or φ =

3π

2
for all r. As a result cosφ

is always 0.

r(ξ) =
lj
2
|ξ| (3.95)

the || represents the absolute value. r is always a positive value, that varies from 0 to
lj
2

as

33

function of x
′

and thus in function of ξ from 0 to +1. With this:

Gjj =

∫

Γj

v ds =

∫

Γj

1

2π
ln r ds = 2

lj/2∫

0

1

2π
ln r dr =

lj
2π

[
ln

(
lj
2

)
− 1

]
(3.96)

and:

Ĥjj =
1

2π

∫

Γj

cosφ

r
ds =

1

2π

1∫

−1

cosφ

|ξ| dξ =
2

2π
[cosφ ln |ξ|]10 = 0 (3.97)

3.4.3 Multi-zone body or composite domain

The fundamental solution is only valid for homogeneous domains, and when the aquifer is
not, it should be subdivided in different zones that are homogeneous or can be simplified to
be so. Equation (3.74) is then valid for all the sub zones individually but extra information is
available for the interfaces between two zones. On the boundary of Γ, u or un is known and
thus one equation (3.74) can be written with one unknown. For points on the interface both
u and un are unknown, there is thus only one equation and 2 unknown. For each point pi on
the interface however, two equations (3.74) can be written. One for the first zone, I, and one
for the second zone ,II , pi is in. There are thus 2 equations with 4 unknown (ui,I , ui,I , ui,In
and ui,IIn), however 2 additional equations are available from physical considerations:

• Continuity of the potential. The water height in one node is constant, and thus ui,I in
the first zone equals ui,II in the second zone: ui,I = ui,II .

• Continuity of the flux. The net flow in a point is zero. What flows in from one zone
has to go out in the other zone, qi,In + qi,IIn = 0. And thus qin = −qi,IIn . With Darcy’s

law this becomes TI · ui,In = −TII · ui,IIn or ui,IIn = − TI
TII
· ui,In .

q is the flow and T the transmissivity. With this two extra relations per point, we now have
as many linear unknown equations as there are unknown. In section (3.6) this is explained
with an example.

3.4.4 Well influence

The boundary element method is especially useful when the load is applied on the boundary
but it can also deal with loads inside the domain, called a body force. The influence of a
well is such a load and it is very easy to apply when using the boundary element method.
As analytically proven in section (3.3.2), the non homogeneous solution (because of the well)

34

exists of the homogeneous solution calculated before and an extra term because of the well
(superposition):

N∑

j=1

Hiju
j =

N∑

j=1

Giju
j
n

︸ ︷︷ ︸
homogeneous part

+

Nw∑

w=1

(
℘ · Qw

2πT
ln ri

)

︸ ︷︷ ︸
non homogeneous part

(3.98)

In this formula Nw is the number of wells and ri is the distance from the well to the nodes pi
of the same zone of the well:

ri =
√

(xi − xw)2 + (yi − yw)2 (3.99)

The non homogeneous part only affects the boundary elements that are in the same zone of
the well. When the boundary element, pi, is in the same zone as the well, then ℘ = 1 and if
not so ℘ = 0.

3.4.5 Sheet pile wall

A sheet pile wall is a screen of piles that stops water from flowing according to its natural
path. When such a wall is placed close to a boundary of the aquifer, water that tends to flow
into the aquifer needs to go around it. Seawater infiltration is thus blocked and the wells can
have a higher flow rate.

Implementing a sheet pile wall in the boundary element method means adding and or changing
boundary elements through which no flow can exist: qi = 0 and as a result ūin = 0. The
location of the sheet pile wall is generated by the genetic algorithm. It will generate a begin
and endpoint for the sheet pile wall on the coastline. Based upon this begin and endpoint the
boundary elements will constantly change. The boundary elements that were input by the
user can thus be changed and need to be recalculated if necessary. In order not to recalculate
all the boundary elements every time again, only those that have the property of being a
coastal line will be recalculated. And also, the sheet pile wall can only be generated on
such boundary elements. Moreover the boundary elements that are coastal lines have to be
connected without occurrence of a non coastal boundary element in between. Good input
data could then be as depicted in fig. (3.9). Boundary elements 0, 1 and 2 represent the
coastline. On these three lines a sheet pile wall can be placed.

35

1 2
3

4
567

8

9

s=0 s=� s=�+�
s=�+�+�
(=max spw
length)

Figure 3.9: Path σ for sheet pile wall

Nine different situations my now occur for the combination of begin and endpoint. The first
five take place when the begin and endpoint of the sheet pile wall is spawn on one and the
same boundary element, they are listed in figure (3.10). A first possibility is that the begin
and end point spawn are the same. In this case A) the length of the sheet pile wall is 0, and
nothing should be changed to the boundary elements that were input. Another possibility
only affecting one element is that the begin point is spawn on the begin point of the element,
and the endpoint somewhere inside the element. In this situation the existing element needs
to be split in two. One of the elements will get the property that ūn = 0 and the other
element will have the exact same boundary condition as the original element. The extreme
point of the elements need to be recalculated and the array size will increase by one because
of the extra element that was created. A similar thing happens in case C) the only difference
with B) is how the boundary elements are created by the algorithm.

In case D) the sheet pile wall starts and end somewhere in the boundary element. Two extra
elements should now be created. One on both sides of the existing boundary element that
is now shortened in length and gets the boundary condition ūn = 0. The newly created
boundary elements get all their properties from the parent element, except for the extreme
points and hence the length. The array size is incremented by 2. A last case that only affects
one boundary element is when the beginpoint of the sheet pile wall and the boundary element
are the same and at the same moment the same happens for the endpoint. No extra elements
need to be created and only the boundary condition needs to be set to ūn = 0.

36

A)

B)

C)

D)

E) +0

+2

+1

+1

+0

Figure 3.10: Changes to boundary elements when a sheet pile wall is used and the begin and end
point of the sheet pile wall is on one boundary element only

4 other situations can occur when the begin and start point of the sheet pile wall are not on
the same boundary element. At least two boundary elements are affected. Figure 3.11 shows
the possibilities. In case A) the sheet pile wall ends inside a boundary element (the most
right) and begins in the begin point of another element. The most right element will thus be
split up in two new elements. One element becomes a sheet pile wall and the other inherits the
properties of the former element. All the boundary elements in between the element where
the sheet pile wall starts and ends keep their exact same properties, except that the boundary
condition is changed to that of ūn = 0. In this case the element that holds the beginning of
the sheet pile wall is entirely a sheet pile wall and only it’s boundary condition needs to be
changed. A similar situation occurs in situation B), where only the first element that holds
the sheet pile wall needs to be split up. In both cases 1 extra element is created and hence
the array size increases by one.

In case C) both the begin and endpoint of the sheet pile wall are located inside a boundary
element. As a result two extra boundary elements have to be created and the array size is
incremented by two. In case D) the sheet pile wall starts in the begin point of a boundary
element and ends in the endpoint of an element. No extra lines need to be created, only the
boundary conditions need to be changed so that no water can flow through the elements.

The algorithm will thus first find out how many lines are affected by the sheet pile wall. If
necessary it will split existing and add extra boundary elements and change the properties
so that the elements behave as a sheet pile wall, and the newly created elements take the

37

properties of the parent element.

A)

B)

C)

D)
+0

+2

+1

+1

Figure 3.11: Changes to boundary element when a sheet pile wall is used and the begin and end
point of the sheet pile wall affect more than one boundary element only

3.4.6 Gauss elimination

Solving equation (3.98) is done by using Gauss iteration. In a first step all the unknown
should be brought to one side and all the known to the other side in the equality:

H · u = G · un ⇒ A ·X = Bt · Y = B (3.100)

A holds all the unknown values of H and G (u and un) and Bt all the known values of (ū and
ūn). Bt and Y hold thus only known values and this matrix can be calculated. X holds all
the unknown and when A ·X = B is solved to X, the unknown are stored in the X vector.
Solving this equation is done as previously mentioned by Gauss elimination.

38

Two potential problems may arise during the computation: divide by 0 error and round-off
errors. Therefore Gauss elimination with partial pivoting is used. When partial pivoting is
used all rows in the loop are compared with each other and the one that starts with the
highest (absolute) value is brought in front position. Doing this, dividing by 0 is eliminated.
In the case a column only has 0’s in all the rows, the set of equations is unsolvable.

When multiple domain problems are considered the A matrix will have zones with only zeros
there where nodes do not have a relationship with each other. Nodes from different zones
don’t have a hij and gij value. To deal with this gauss elimination is used where both rows
and columns might change places. When two columns changes place, the X matrix changes,
and when rows are changed of place the B matrix changes without affecting the B matrix.

3.5 Minimizing the calculation work

3.5.1 Calculating A and Bt immediately

Most calculations are made for the G and H matrix, and then transforming them to a A and
B matrix based upon the known value of ū of ūn. Therefore the algorithm was designed in
such a way it calculates A and B immediately. When adding a sheet pile wall, the A and
B matrices will change. First of all its size will grow by one when the sheet pile wall begins
inside a line, that is not on one of its extreme points. The same increment takes place when
the sheet pile wall ends inside a line. The size of the array can thus be increased by one or
by two.

The data stored in the matrices containing the information for the calculations also changes,
but only there where the sheet pile wall is added. Figure (3.12) gives an example. There is
thus no need to calculate the elements of A and B for the lines that are never changed.

Two extra lines were
created by subdividing
two existing lines

Figure 3.12: Creating extra lines by subdividing (sheet pile wall)

39

3.5.2 Reducing calculation time for A and Bt matrix

A first reduction already discussed previously is to calculate the A and B matrix without first
calculating the H and G matrix. A serious improvement was realized in doing so, but the
calculation work could be reduced even more. In the case that no sheet pile wall is used the
values of A and B remain constant. The well influence is calculated by superposition. This
superposition happens after A and B are calculated and before the equation A · X = B is
solved.

In the case a sheet pile wall is used the size of A and B will vary because extra lines are
generated for the sheet pile wall. However, for the line elements that are not on the coastline,
the respective values can be copied. This means all elements in A and Bt where element i
and j are not on the coastline can be copied into the new resized arrays A and Bt. Special
attention is required for the location in the destination array because extra lines (and thus
unknown and known) were added.

The algorithm will thus calculate four matrices even before the genetic algorithm is executed:
uA, uBt, uplaatsX and uplaatsB. They are filled for the input data, thus without generating
a sheet pile wall. In the case no sheet pile wall is used these four matrices can be used in the
genetic algorithm without changing anything over all the runs. In the case that a sheet pile
wall is used all the elements of uA and uBt that are not on the coastline can be copied to
the arrays A and Bt. The other elements of A and Bt need to be calculated every time again
and are different for every chromosome combination.

The A and B arrays can be ordered in such a way that the part containing the non coastal
line elements never need to be calculated again. Consider again the following matrix equation
that was constructed before:

A ·X = B (B = Bt · Y) (3.101)

The matrices should be filled now in such a way that all the elements that remain constant
during the generations are grouped together. In other words this means that all the lines that
are not on the coast are grouped. X has than the following structure:

X =
{{
xf,1 xf,2 · · ·xf,n−1 xf,n

}{
xc,1 xc,2 · · ·xc,m−1 xc,m

}}T
(3.102)

The index f represents all the unknown (u, un) for the line elements that are not coastal
line elements. There are n unknown, two for each interface line element and one for the line
elements not on the interface. They are (f)ixed. The index c stands for (c)oastal. The number
of unknown for the coastal lines, m, is exactly the number of coastal lines, because, as stated
previously, a line element that is on the interface can never be a coastal line.

Grouping all the non coastal line elements in the above part of the matrix X means that
the corresponding values in the A matrix will be in the first n columns. When the A matrix
(and thus the corresponding Bt matrix) is filled by starting on the first row and writing

40

equations for the coastal line elements first, a upper left matrix is created that never needs
to be calculated for the same aquifer. That this values are written in the upper left part of
A has another advantage. When later a sheet pile wall is inserted the size of A will increase.
There is no need to set up a new array with the new size, because the existing matrix can
just be resized. Copying from one to another array is in that way bypassed. A now has the
following structure:

A =

af1,f1 · · · af1,fn

...
. . .

...
afn,f1 · · · afn,fn

af1,c1 · · · af1,cm

...
. . .

...
afn,c1 · · · afn,cm

ac1,f1 · · · ac1,fn

...
. . .

...
acm,f1 · · · acm,fn

ac1,c1 · · · ac1,cm

...
. . .

...
acm,c1 · · · acm,cm

(3.103)

In the A matrix only 3 of the 4 zones need to be calculated over and over. When the number
of non coastal lines is much larger than the number of coastal line elements a serious reduction
is achieved.

A similar approach is to be followed for the Bt and Y matrices. Bt will have as many rows
as there are equations available, to be more precise (m + n). The number of columns, k,
is the number of coastal lines that are not on the interface. For line elements that are the
interface both u and un are unknown and therefore they are in the X matrix. As for X, Y
can be divided in two zones, a first zone containing all the non coastal line elements and in
the second all the coastal line elements.

Y =
{{
yf,1 yf,2 · · · yf,k−1 yf,k

}{
yc,1 yc,2 · · · yc,m−1 yc,m

}}T
(3.104)

This results in a similar structure for Btt:

Bt =

btf1,f1 · · · btf1,fk

...
. . .

...
btfn,f1 · · · btfn,fk

btf1,c1 · · · btf1,cm

...
. . .

...
btfn,c1 · · · btfn,cm

btc1,f1 · · · btc1,fk

...
. . .

...
btcm,f1 · · · btcm,fk

btc1,c1 · · · btc1,cm

...
. . .

...
btcm,c1 · · · btcm,cm

(3.105)

3.6 Simple example

In this example, a very basic aquifer will be dealt with. It consists out of two zones and 5
boundary elements as shown in figure (3.13). Boundary elements 0 and 1 are on the coast,
and therefore they have a constant head condition (ū). Boundary elements 3 and 4 provide
inflow because of a natural elevation. For those boundary elements ūn. Zone I and II (each

41

with their own transmissivity) have one boundary element in common, called the interface
and that is boundary element 2.

u known un known

zone I
(T0)

zone II
(T0)

O

1

2
4

3

Figure 3.13: Multi-zone body

There are 6 equations (3.76) that can be written. One equation for every node on Γ and two
for every node on the interface. Boundary elements 0 and 1 are only in direct contact with
each other and the interface, therefore:

h00 · ū0 + h01 · ū1 + h02 · u2,I = g00 · u0
n + g01 · u1

n + g02 · u2,I
n (3.106)

h10 · ū0 + h11 · ū1 + h12 · u2,I = g10 · u0
n + g11 · u1

n + g12 · u2,I
n (3.107)

In this equation hxy is calculated from (3.97) or (3.92) and gx,y from (3.96) or (3.89). x and

y represent the boundary elements considered. In u2,I and u2,I
n , I represents zone I. For the

interface two equations can be written, one that expresses the relation with zone I and a
second with zone II:

h20 · ū0 + h21 · ū1 + h22 · u2,I = g20 · u0
n + g21 · u1

n + g22 · u2,I
n (3.108)

h22 · u2,II + h23 · u3 + h24 · u4 = g22 · u2,II
n + g23 · ū3

n + g24 · ū4
n (3.109)

And for the boundary elements in the second zone:

h32 · u2,II + h33 · u3 + h34 · u4 = g32 · u2,II
n + g33 · ū3

n + g34 · ū4
n (3.110)

h42 · u2,II + h43 · u3 + h44 · u4 = g42 · u2,II
n + g43 · ū3

n + g44 · ū4
n (3.111)

Further, for boundary elements on the interface the following is known, because of the conti-
nuity of potential and flux:

u2,I = u2,II = u2 (3.112)

42

u2,I
n = −kII

kI
· u2,II

n = −kI,II · u2,II
n = −kI,II · u2

n (3.113)

These 6 equations can be written as one matrix equation. As explained in section (3.5.1), The
matrix equation A ·X = Bt · Y will be constructed without first constructing H · u = G · un.
Further more A,X,Bt and Y will be filled in such a way that the elements that never change
are grouped as is explained in section (3.5.2). One possible X and Y vector could thus be:

XT =
{
u2, u2

n, u
3, u4, u0

n, u
1
n

}
(3.114)

Y T =
{
u3
n, u

4
n, u

0, u1
}

(3.115)

As it is supposed to be, X holds all the unknown and Y the unknown. The matrix A and Bt
are thus:

A =

h02 −g02 0 0 −g00 −g01

h12 −g12 0 0 −g10 −g11

h22 −g22 0 0 −g20 −g21

h22 −g22 · kI/kII h23 h24 0 0
h32 −g32 · kI/kII h33 h34 0 0
h42 −g42 · kI/kII h43 h44 0 0

(3.116)

Bt =

0 0 −h00 −h01

0 0 −h10 −h11

0 0 −h20 −h21

g23 g24 0 0
g33 g34 0 0
g43 g44 0 0

(3.117)

This means that for every element gij and hij , a check should be carried out in order to see if
the element should be on the left or on the right side of the equality sign. If it changes side,
a - sign is introduced. The position where it will be stored in A or Bt depends of the position
of u or un in X or Y . All the values of Y are known and B can hence, B can be calculated
as B = Bt · Y . The formulation A ·X = B has now been derived and can be solved for the
vector X using Gauss elimination.

The third objective of this thesis requires the implementation of a sheet pile wall. A sheet
pile wall can only be placed on the coast line, here boundary elements 0 and 1. They can thus
never affect the values of hij and gij when both elements i and j are not a coastal boundary
element. Figure (3.14) shows a possible sheet pile wall that affects both the boundary elements
0 and 1. The original boundary elements are shortened and their boundary condition changes

43

to a known flux of 0. Two extra boundary elements need to be generated in order to make
the zone closed again. The boundary conditions of 5 are the same as the original of 0 and the
same happens for element 6 with the properties of 1.

u known un known

zone I
(T0)

zone II
(T0)

O

1

2
4

3

un = 0
(no flux)

u known
(copied from
boundary element
0 and 1)1

O

5

6

Figure 3.14: Multi-zone body (detail)

Two extra boundary elements bring along two extra unknown, but create two extra equations
at the same time. Hence, X and Y will grow with two elements and they are now:

XT =
{
u2, u2

n, u
3, u4, u0, u1, u4

n, u
6
n

}
(3.118)

Y T =
{
u3
n, u

4
n, u

0
n, u

1
n, u

5, u6
}

(3.119)

X and Y have only changed for the coastal lines. The same happens for the A and Bt matrices
where the relationship between two not coastal elements remains the same. They do thus not
need to be recalculated over and over.

44

Chapter 4

Combined use of genetic algorithm
and boundary element method

This chapter will explain how the genetic algorithm and the boundary element method are
combined, it is how the genetic algorithm uses the boundary element method. From the
previous chapters it is clear that a lot of calculations need to be carried out over and over.
The calculation work carried out is already limited by calculating A and Bt without first
calculating H and G and by only calculating the new elements of A and Bt. In the following
section two memories will be introduced to further minimize the calculation load. After that
a scheme is given that shows all the functions used in the algorithm. From this scheme the
reader should understand exactly how the boundary element method is used by the genetic
algorithm. For the full details of the algorithm the reader is referred to the back of this thesis.

4.1 Further minimization of the calculation work

4.1.1 Well memory

Finding out in what zone the well is located is a long procedure. It first needs to go through
all the boundary elements to discover the elements around the well. Doing so it will find lines
that in the worst case all belong to two zones. To find out in which of both zones the well is
located also the neighbours of the last array of lines need to be found. This work is rather long
and especially inefficient because the well can have maximum two degrees of freedom for its
position (x and y) coordinate. When both are variable the number of different chromosomes
for the well position is 2λ · 2λ. When only x or y is allowed to variate this number is only 2λ.
For a chromosome length of 8 this means 65536 or 256 possible well positions, resp.

Executing 10 trials each having a population size of 50 and being generated 100 times, thus
resulting in 50000 fitness calculations it becomes clear that, especially in the case of one degree
of freedom, storing the well chromosomes and their zone number will reduce the calculation
time required.

In the case that x and y are not allowed to variate, their zone number should only be calculated
once.

45

4.1.2 Chromosomes memory

In order to decrease the calculations that need to be carried out, the algorithm is provided
with a memory. At the end of every generation the chromosomes that were created for the
first time are stored in the memory, accompanied by the fitness of the chromosome. For every
run it can then be checked if the chromosome has already occurred, and if so, it’s fitness
function does not need to be calculated anymore. When the chromosome has never been
generated, then its fitness function will be calculated and stored away in the memory.

For example when working with two variables (Q1 and Q2 for example), each having a chro-
mosome length of 8. There are in this case (28) · (28) = 65536 different combinations possible.
When 10 trials are executed, with a population size of 50 and 100 generations are carried
out per trial, in average more than half of the 50000 calculations can be skipped because the
fitness value was stored in the memory of the genetic algorithm. This also leads to a time
reduction of 50%.

The advantage of memory is more noticeable for:

• a higher number of trials,

• shorter chromosomes (λ) (number of different chromosome possibilities ≈NOV) and

• less variables, NOV , (number of different chromosome possibilities ≈ 2λ)

NOV is the number of variables.

4.2 Schema

Figures (4.1) and (4.2) shows how the boundary element method and the genetic algorithm are
combined, or how the genetic algorithm uses the boundary element method to calculate the
fitness it requires for its evolution. In the scheme the pre- and post processor are not included.
The statistical data that is stored is also left out in order not to complicate the scheme. The
functions mentioned in the scheme are the names as they are used in the algorithm. An out
print of the algorithm (once again without pre- and postprocessor) is added to the back and
the functions referred to are found in appendix (B).

Before the trials are started the input data is processed, this happens in the CalculateInput
function. The length of the lines and the absolute coordinates of the nodes are calculated.
Based upon the characteristics of every line, i.e. if the line is on the interface or on the
coast the matrix X and Y are set up. This is done by the functions CalculateUplaatsX and
CalculateUplaatsY :

Based upon the position of every line inX and Y , the arrays A andBt are filled (X ·A = Y ·Bt).
They are filled, as explained before in such a way that all the elements for non coastal
boundary elements are grouped and can be used later on, without recalculating A and Bt
over and over. A final function that is called is CalculateLinOrderAndCumulLineEnd. This

46

function goes through all the boundary elements, finds out what lines are on the coast and
finds out how they are in counterclockwise (anticlockwise) direction. This is necessary to
know what boundary elements will be affected by placing a sheet pile. The order is the same
during all runs.

For every trial a population of chromosomes (existing of subchromosomes) is generated by the
function generatePopulation. The population size is one of the parameters of that function,
together with the number of subchromosomes and the length of every subchromosome. For
this first population the goal is to decide what exactly the fitness of the chromosome is.
Before starting the calculations for every chromosome in the population, it is checked if
the chromosome has never been calculated before. Every chromosome that was calculated
before is stored in a memory together with its fitness. The fitness can, in the case of second
occurrence, simply be read from the memory, without recalculation. In the case that the
chromosome has never been generated before, its fitness will be calculated. The first step
of this calculation is to find out if a sheet pile wall needs to be included. In the case this
is the beginning and endpoint of the sheet pile wall should be calculated. The function
beginAndEndSpw takes care of this. This function takes at least one chromosome as an
argument. For the chromosomes that are passed a double value is calculated. When one
chromosome is passed, the begin point of the sheet pile wall is calculated, and the length
is constant. In the case two chromosomes are passed and the beginning and end points are
calculated. This function also looks on which boundary element these beginning and endpoint
are located. The fillAffectedLines finds out what boundary elements are affected by the sheet
pile wall. Being affected means that the sheet pile is at least for one point on the boundary
element.

The most important function when a sheet pile wall needs to be included is the fillArray-
WithValues function. This function recalculates the boundary elements on the coast (length,
node coordinates, boundary condition). This function thus adds one or two or no boundary
elements. More details about this function can be found in the previous section.

Before the boundary element method is executed the zone for each well is calculated. A
separated memory is available for the well positions. Every well position and corresponding
zone, previously calculated is stored in the memory and when called a second the zone can
be read from the memory without going through all of the boundary elements again.

All the necessary data is calculated now and the boundary elements can be triggered. The
only purpose of the boundary element method is to calculate the fitness of the chromosome.
Since new boundary elements might be added the X and Y vectors need to reviewed. They
were filled in such a way that the coastal boundary elements were added to the end of the
vector, and thus only the last part needs to be recalculated. AddToPlaatsXandY takes care
of this job. Before the solution for (A ·X = Bt · Y) can be yield A and Bt should be filled.
All the elements of A and Bt that express the relation between two elements that are not on
the coast can just be copied (CopyKnownValuesOfAandBt) and the other values need to be
calculated (CalculatedAandBt) since they might have changed or never have been calculated
before. From Y and Bt, B can be calculated (B = Bt · Y) by function CalculateB. Before
the function SolveIntelligent solves the equations (A ·X = B) (using Gauss elimination), the
influence of the well is added by WellInfluenceSmart. The final step of the boundary element

47

method is to sort the unknown (u, un) that were found, based upon the type of boundary
condition they represent.

All the previous work done was carried out to calculate on double value, namely the fitness of
the chromosome. The void CalculateFitnessFunction calculates the fitness for the chromosome
and stores it in the memory together with the inflow characteristics. This is done by the
fillCalculatedChromosomesAndInflowCharacteristics function.

The entire cycle, starting with checking if the chromosome has ever been calculated before
until storing the chromosome with its calculated fitness function and inflow characteristics is
now done for every chromosome in the population. As a result, all chromosomes have now
been assigned fitness and this fitness will be used to create a new generation. When elitism
is used the fittest chromosome is stored before selection takes place, in order not to lose the
fittest result. From all the chromosomes in the population a selection is made. This can
happen in three ways. Using roulette wheel selection, ranking or by tournament method. A
new population (with the same size) is selected and then chromosomes can undergo crossover
(function crossOver) by chance. After chromosomes crossed over they are also submitted to
mutation (function mutation). When elitism is used the fittest function is now added to the
population again (deleting the last chromosome).

For this newly created population of chromosomes the fitness function is calculated again as
described above. This is done for the number of generations. After the last generation a very
fit chromosomes should have survived and the fittest is returned as the (optimum) solution.

48

//Scheme without pre and post processor

//1. To be called only once

CalculateInput(…)

CalculateUplaatsX(…)

CalculateUplaatsY(…)

CalculateAandBStart(…)

CalculateLineOrderAndCumulLineEnd(…)

//2. For every trial

 //2.a) Generate the initial population

 GeneratePopulation(…)

 //2.b) Calculate the fitness function for the chromosomes in the original population (γ = 0)

BLOC A //block A calculates the fitness of each chromosome, using the boundary

element method.

//2. c) For every generation (γ = 1 .. NOG)

2.c.1) If elitism is used: store fittest

2.c.2) Selection (Roulette wheel, ranking, selection constant)

2.c.3) Crossover(…)

2.c.4) Mutation(…) and flip(…) //flip = antimetathesis void

2.c.5) If elitism is used: bring fittest back into the population

BLOC A

//next generation (2.c)

 //next trial (2)

Figure 4.1: Combined use of genetic algorithm and boundary element method

49

//BLOC A

//For all chromosomes in the population

//1. Check if this chromosome has been calculated previously

checkIfNeedsToBeCalculated(…)

 //1.a) should not be calculated Read from memory and store fitness

//1.b) should be calculated

 //1.b.1) Check if a sheet pile wall is implemented

 //1.b.1.a) should not be calculated GO TO 1.b.2)

 //1.b.1.a) should be calculated

 beginAndEndSpw(…)

 fillAffectedLines(…)

 fillArrayWithValues(…)

 //1.b.2) For all wells included:

 //1.b.2.a) should not be calculated Read from memory

 //1.b.1.a) should be calculated

 findOutZoneIntellegent(…)

 fillCalculatedWellPosition(…)

 addToUplaatsXandY(…)

 copyKnownValuesOfAandBt(…)

 calculateAandBt(…)

 calculateB(…)

 wellInfluenceSmart(…)

 solveIntellegent(…)

 reorderSmart(…)

 calculateFitnessfunction(…)

 fillCalculatedeChromosomesAndInflowCharacteristics(…)

//next chromosome go to 1)

Figure 4.2: Combined use of genetic algorithm and boundary element method - A Block

50

Chapter 5

Application examples

The aquifer studied in this master’s thesis has been studied before by Petala [24]. Figure
(5.1) shows this aquifer and its boundary conditions. There are two zones, both with their
own transmissivity T . T0 = 0.003 m/s and T1 = 0.001 m/s.

u=50
1800, 2200

(1800, 2200)

1800, 400)

(200,0)

(200,1200)

((0,2200)

u=0

zone 0

zone 2

un=0

F

D

A

E

C

B

Figure 5.1: Aquifer studied

Line AB represents the coastline. Lines BCE and ADF are impermeable and line FE allows
inflow from fresh water due to natural elevation. The only way for saline water to enter the

51

aquifer is from the coast, through line AB. Natural flow is from zone 1 to zone 0 because of
the height difference. 50 meters (fresh water) to 0 meters (saline water equivalent).

Before the genetic algorithm can use the boundary element method, the aquifer needs to
be simplified to a chain of boundary elements that represent the aquifer. Lines AB, BC
and DA belong only to zone 0, lines CE, EF and FD only to zone 1 and line CD belongs
to both zone 1 and 0. This line is the interface of both zones. All lines now need to be
subdivided in boundary elements and the subdivision should be high enough so that the
solution is accurate enough so that no extra convergence of the results would be obtained
by subdividing the boundary elements even more. This is tested by increasing the number
of boundary elements and finding out what is the influence for the results found. When the
increase of the number of boundary elements does not lead to improvements of the accuracy
of the solutions calculated, called convergence, then a sufficient subdivision is reached. The
more boundary elements used the longer the calculation time required.

The input of the aquifer counts 45 boundary elements. Line AB is discretized in 8 elements,
as is the interface. BC counts 4, CE 5, FE 9, FD 5 and AD 6 elements.

5.1 Objective 1: optimal well flow for two fixed wells

In this case the developed software is used to calculate the optimal well configuration for
two wells. Both wells have fixed coordinates, the first well, W1 = (500, 700) and the second
W2 = (1400, 800). In a first attempt the flow is presumed to be between 0.01 and 0.05 m3/s
for both wells. The input parameters used are shown in table (5.1).

PS 50 Pc 0.35
NOG 100 Pm = Pf 0.111
NOT 10 ε TRUE

Selection type Roulette wheel

Table 5.1: Input parameters

There are two unknown Q1 and Q2 each representing a chromosome. The length of the
chromosome depends on the accuracy required and can be calculated according to eq. (2.12):

λmin ≥
ln

(
0.05− 0.01 + 0.0001

0.0001

)

ln 2
= 8.64 (5.1)

The chromosome length for both variables will be taken to be 9. The total combination of
different chromosomes is thus 29 ·29 = 218 = 262144. Even with two chromosomes with a short
chromosome length, it becomes clear that the use of a genetic algorithm could come in use to
reduce the calculation work, that is calculating the solution for the 262144 possibilities when
the traditional way of solving the problem is used. One trial only calculates, at maximum
5000 candidate solutions. At maximum only 1.91% of the posibilities are calculated, and by

52

using the memory the calculation works will even be less. Pm = Pf is calculated as suggested:
1/λ = 0.111. The fitness function used is the proposed fitness function by Katsifarakis and
Petala [8], ΦK :

ΦK =
W∑

i=1

qw,i − (70 · κ− 7
κ∑

i=1

qw,i · li)

=

W∑

i=1

qw,i − (70 · κ− 7

κ∑

i=1

Ti · un,i · li)
(5.2)

The idea is to have high fitness when a lot of water is extracted from the wells. However,
when seawater intrusion takes place, the fitness should be lowered again. In eq. (5.2), W is
the total number of wells and κ represents the number of lines where un is positive (there
is seawater intrusion). The summation only includes the κ elements boundary elements that
have inflow.

5.1.1 Results

10 trials were carried out, no absolute optimum, but 10 very fit solutions were found. The
fitness ranged between ΦK ∈ [0.0689, 0.0695]. The combinations of Q1 and Q2 are shown in
table (5.2).

Trial 0 1 2 3 4

ΦK 0.06900 0.06916 0.06892 0.06932 0.06924
Q1 0.03059 0.03137 0.03059 0.03121 0.03145
Q2 0.03841 0.03779 0.03834 0.03810 0.03779

Gmax 85 19 77 71 83

Trial 5 6 7 8 9

ΦK 0.06892 0.06947 0.06908 0.06939 0.06947
Q1 0.03114 0.03121 0.03114 0.03106 0.03137
Q2 0.03779 0.03826 0.03795 0.03834 0.03810

Gmax 98 80 93 81 45

Table 5.2: Objective 2: Results for ΦK , Q1, Q2 and Gmax

The solutions were found sometimes near last generations. This indicates that there has not
been absolute convergence and maybe the number of generations should be increased. In
the following section the influence of the memory and the reduction in calculation will be
discussed and then the exact solutions for this objective will be calculated.

5.1.2 The use of the memory per trial

Including a memory for the position of the well is here very effective, because only two
calculations are required. Once for the position of W1 and once for W2. The position is fixed

53

and the zone found during the first calculation can thus be used over and over. The number
of well positions stored in the memory is 2, and from that moment on no new wells will be
calculated.

Figure (5.2) shows the evolution of the number of calculations that are saved by using a
memory as function of the generation for the first trial. During all generations, chromosomes
that occur for the first time are stored together with their fitness. When the same chromosome
is generated again (by crossover, mutation, antimetathesis and selection) the fitness function
is just copied and its calculation can be skipped. As is to be expected there is a lot of spread,
but the general trend is that the number of calculations that are saved during one generation
increases as function of the generation. For the first trial alone 602 calculations were saved.
This is a reduction of 12.04% compared to the calculations required when no memory was
build in.

0

10

20

30

40

50

60

0 20 40 60 80 100

Figure 5.2: Calculations saved because of memory as function of the generation during the first trial

The software is programmed in such a way that it can perform different trials in order to
achieve a statistical insight of the solutions obtained. The memory is not cleared after a
trial is executed and the genetic algorithm can thus use what it learned from previous trials.
Figure (5.3) shows the evolution of the number of calculations saved for the first 10 trials.
In the 5th trial already 946 (18.92%) of all calculations are saved, and during the last trial
the number of calculations saved is already 1381 (71.98%). The genetic algorithm is thus a
good student or at least has a very good memory. The same excercise was carried out with

54

two chromosomes of 8 genes. In the 5th trial already 55.06%, and during the last trial 71.98.
This thus shows that shorter chromosomes will, drastically reduce the calculation. From ±
15 minutes (λ = 9) to ± 8 minutes (λ = 8).

0

200

400

600

800

1000

1200

1400

1600

0 1 2 3 4 5 6 7 8 9 10

Figure 5.3: Calculations saved because of memory as function of the trial

5.1.3 Reducing calculation time for A and Bt matrix

Since there is no sheet pile wall included in this stage, the boundary elements will always
remain the same. This means that the A and Bt matrix will always have the same values.
The influence of the wells is added by superposition after calculating A and B = Bt · Y . The
script was thus optimized to handle this and the A and Bt matrix will thus only have been
calculated once and not 5000 times per trial.

5.1.4 From good to optimum results

As stated before, a genetic algorithm should be used to find very fit solutions, but it is not
sure that the solutions found are the absolute optimal solutions. Around the solutions found
a traditional search should be used to find the optimum solution. Here a different approach
will be used. After the first execution of the algorithm a second execution will take place, to
fine tune the results.

55

From table (5.2) it is known that Q1 ∈ [0.03059, 0, 03145] and Q2 ∈ [0.03779, 0.03841]. A
second set of 10 trials will now be executed between those limits. Q1 : 0.030 → 0.032 and
Q1 : 0.037→ 0.039. ∆P is left unchanged and the minimum chromosome length is calculated
to be 4.24 and thus λ = 5, for both chromosomes. The total number of different chromosomes
possible is 1024. These 1024 possibilities are smaller than the 5000 chromosomes that will be
calculated every trial, and it is thus very likely that the results for all trials will be the same.
The results are listed in table (5.3).

Trial 0 1 2 3 4

ΦK 0.06958 0.06958 0.06958 0.06958 0.06958
Q1 0.03129 0.03135 0.03129 0.03129 0.03135
Q2 0.03829 0.03823 0.03829 0.03829 0.03823

Gmax 1 4 15 6 5
Saved 4019 4964 4994 5000 5000

Trial 5 6 7 8 9

ΦK 0.06958 0.06958 0.06958 0.06958 0.06958
Q1 0.03135 0.03129 0.03135 0.03129 0.03135
Q2 0.03823 0.03829 0.03823 0.03829 0.03823

Gmax 11 4 0 3 5
Saved 4999 5000 5000 5000 5000

Table 5.3: Objective 2: fine tuned results for ΦK , Q1, Q2, Gmax and the number of calculations saved
per trial

The fitness found is ten times the same, and even higher than was obtained before. It was
surprising to find out that there are 2 chromosomes that are identically as fit, because there
are 2 solutions found that are fit: (Q1 = 0.03129, Q2 = 0.03829) and (Q1 = 0.03135, Q2 =
0.03823). This is not the result of rounding mistakes as it was checked that both fitnesses
are exactly the same, no matter how many digits after the comma were used. Exactly 5 of
each chromosomes were found to be as fit, which shows again the statistical property of using
genetic algorithms.

The memory size after all the runs was exactly 1024, the theoretical number of possibilities.
So it is impossible that there was one chromosome that was fitter but never was selected.
The last table also shows how many calculations were saved. From the fourth run on the
number of calculations saved is 5000 except for trial number 5, where the algorithm selected
a chromosome that had never been generated before.

The best solution is always found in the first 16 generations and thus the number of generations
could safely be reduced to 25. This would lead to a calculation time that is about 4 times
shorter. In this case this would mean that the calculation time would go from 23 seconds to
approximately 6 seconds. It is thus very clear that the shorter the chromosome is, the shorter
the calculation time will be, where a memory for the previous results is used.

It should be mentioned that no sea water intrusion took place in the solutions calculated.

56

5.2 Objective 2 and 3: implementation of a sheet pile wall -
Input parameters

In this chapter the objective will be to provide a water recourse manager with relevant in-
formation for his decision making. This manager wants to extract more fresh water from the
two existing wells used in objective 1. Therefore he wants to know if the use of a sheet pile
could be beneficial.

For a given sheet pile length, the best optimum combination of q1, q2 and so will be researched.
q1 and q2 is the flow extracted resp. from the first well, W1, and the second, W2. so is the
begin point of the sheet pile wall on the coastline. The coastline goes from s = 0 (most left)
to the end of the coast lc (most right, and (l)ength of the (c)oast). Three variables thus
exist and each candidate solution will be represented by a chromosome that has three sub
chromosomes.

q1 and q2 are supposed to vary between 0.01 m3/s and 0.05 m3/s. More detailed information
is required to make a better estimation of what will be the real range, but since no details are
known for the aquifer studied this range is taken. In a first attempt ∆P between two candidate
solutions is taken to be 0.001 m3/s and as a result λ1,2 = 6 for both sub chromosomes.

The beginning position of the sheet pile wall is represented by the third sub chromosome.
The length of the coast, lc is 1649.34 m and the begin point can thus vary between 0 and
lc − lspw (this is computed automatically). Taking ∆P to be 20 m, λ3 = 5 is sufficient when
the sheet pile wall is 1000 meter long. The total chromosome has thus a length of 17 genes
and therefore the mutation probability is taken to be 1/17 = 0.0588 ≈ 0.6.

In what follows the trials will be executed with: PS = 50, NOG = 100, NOT = 10, Pc =
0.35, Pm = Pf = 0.06 and ε = 1 unless mentioned otherwise. Mutation and antimetathesis
both take place for every generation. The algorithm developed has the possibility to run
several trials. Since genetic algorithms are a statistical process it is good to know what
happens if it is run multiple times. A low fitness for one trial can be excluded compared to
the average. This approach is also very effective when combined with a memory because a
lot of calculations can than just be skipped. The calculations carried out next are for a sheet
pile wall with length 1000 m.

The fitness function used is the same as in the first objective and the results listed all have
no saline water inflow.

5.2.1 Different selectors

The developed software allows the user to use three selection techniques: Roulette wheel
selection, ranking and tournament selection. In this first section, all three will be used.
The techniques, ranking and tournament selection require the input of a constant. Ranking
constant will be carried out with KK = 2, 3 and 4 and tournament selection with C = 15, 25
and 35. The results are listed in tables (5.4) and (5.5).

57

case q1,min q1,max ∆q1 q2,min q2,max ∆q2 φmax φave φmin
KK = 2 0.0259 0.0310 0.0051 0.0417 0.0475 0.0057 0.0733 0.0730 0.0721
KK = 3 0.0246 0.0322 0.0076 0.0405 0.0487 0.0083 0.0740 0.0731 0.0727
KK = 4 0.0259 0.0329 0.0070 0.0392 0.0475 0.0083 0.0740 0.0728 0.0721
C = 15 0.0240 0.0373 0.0133 0.0348 0.0487 0.0140 0.0733 0.0724 0.0721
C = 25 0.0233 0.0322 0.0089 0.0398 0.0487 0.0089 0.0733 0.0727 0.0721
C = 35 0.0233 0.0316 0.0083 0.0405 0.0494 0.0089 0.0740 0.0730 0.0721
RW 0.0246 0.0329 0.0083 0.0392 0.0487 0.0095 0.0740 0.0726 0.0721
RW 0.0233 0.0360 0.0127 0.0360 0.0487 0.0127 0.0733 0.0723 0.0721

Table 5.4: Comparison selection methods for Pm = Pf = 0.06 per gene - Q and φ

case Times found Gmin Gmax Σmin Σmax memory size Duration

KK = 2 6 12 63 0.000951 0.005682 31503 0:15:01
KK = 1 4 65 0.000635 0.00411 28333 0:14:09
KK = 4 2 3 78 0.000635 0.005054 23857 0:10:13
C = 15 1 0 74 0 0.003165 39095 0:18:03
C = 25 3 9 86 0.000951 0.00348 37861 0:19:35
C = 35 2 8 90 0.000951 0.004739 36756 0:17:14
RW 1 12 95 0.000635 0.013968 34274 0:16:09
RW 1 4 90 0.04746 0.013968 34318 0:17:30

Table 5.5: Comparison selection methods for Pm = Pf = 0.06 per gene - Times found G, Σ, memory
size and duration

From these tables it is clear that the duration is function of the memory size. Calculating the
chromosome’s fitness (= going through BEM) takes time. Using tournament selection is faster
than roulette wheel (RW) or ranking (C), and the higher KK is, the smaller the memory
size. This can be explained because it is likely that taking the best out of 4 will sooner lead
to convergence than selecting 3 or 2. More of the same chromosomes will be passed to the
next generation which results in less crossover and hence less new chromosomes.

When using ranking, the number of chromosomes that pass to the next generation is related
to the number of different chromosomes calculated. Passing more chromosomes allows less
new chromosomes to be calculated. Passing only 15 chromosomes to the next generation,
seems to prevent convergence of the results. The solution space is as a result bigger. ∆q1(=
q1,max − q1,min) and ∆q2(= q2,max − q2,min) are high compared to the results obtained when
25 and 35 chromosomes that pass. As a result the average fitness is higher for C = 35 than
for C = 15.

It also seems that there is a relationship between the number of different chromosomes cal-
culated and the range of the solutions found (∆q1,∆q2).

5.2.2 Influence of mutation and flip probability

One question that could be posed is if it is necessary to have mutation and flipping. In
the previous subsection both took place with a probability of 6/100 for every gene of the

58

chromosome. As a result some chromosomes were affected in multiple genes at the same
time, creating a totally new chromosome. Most probably the search area will be better
explored because of that, but maybe convergence will be made impossible. Tables (5.6) and
(5.7) show the results.

From these tables it became clear that the higher KK is, the smaller the solution space
became. The same is also visible with the use of the tournament selection.

Compared to mutation and flipping per gene, tournament selection now has a much smaller
memory size, bringing the total calculation time under one minute. The same can be said
for roulette wheel selection, but not for tournament selection, because then refreshment takes
place anyway. The number of different chromosomes calculated is lower for all three selection
methods.

For both KK = 4 and C = 35, φmax, φave and φmin are bigger when mutation and flipping
takes place per gene. Therefore it can be concluded that mutation and flipping is necessary
to find fit chromosomes.

case q1,min q1,max ∆q1 q2,min q2,max ∆q2 φmax φave φmin
KK = 2 0.0144 0.0348 0.0203 0.0348 0.0500 0.0152 0.0733 0.0714 0.0644
KK = 3 0.0246 0.0348 0.0102 0.0367 0.0487 0.0121 0.0733 0.0717 0.0695
KK = 4 0.0271 0.0341 0.0070 0.0348 0.0449 0.0102 0.0733 0.0716 0.0689
C = 15 0.0233 0.0322 0.0089 0.0398 0.0494 0.0095 0.0740 0.0730 0.0721
C = 25 0.0233 0.0322 0.0089 0.0398 0.0494 0.0095 0.0733 0.0726 0.0721
C = 35 0.0278 0.0329 0.0051 0.0386 0.0462 0.0076 0.0740 0.0724 0.0714
RW 0.0290 0.0322 0.0032 0.0398 0.0443 0.0044 0.0733 0.0723 0.0714
RW 0.0252 0.0329 0.0076 0.0386 0.0481 0.0095 0.0733 0.0727 0.0714

Table 5.6: Comparison selection methods for Pm = Pf = 0.06 per chromosome - Q and φ

case Times found Gmin Gmax Σmin Σmax memory size Duration

KK = 2 3 5 36 0.0003 0.0038 2569 0:01:05
KK = 3 1 2 78 0.0010 0.0035 2230 0:00:52
KK = 4 1 1 68 0.0003 0.0028 2371 0:00:57
C = 15 1 14 75 0.0010 0.0038 34092 0:16:42
C = 25 2 0 76 0.0000 0.0032 29151 0:13:28
C = 35 1 12 80 0.0003 0.0032 24270 0:11:07
RW 2 23 99 0.0006 0.0041 8917 0:03:50
RW 3 0 89 0.0000 0.0035 8714 0:03:49

Table 5.7: Comparison selection methods for Pm = Pf = 0.06 per chromosome - Times found G, Σ,
memory size and duration

5.2.3 Fine tuning the results

From the previous subsections it became clear that KK and C needed to be high enough in
order to find fit candidate solutions in a small solution space. C = 15, C = 25, KK = 1 and
KK = 2 will therefore not be studied any more.

59

In this next step the solution space will further be researched. In order not to miss possible
solutions the new search space will be the widest range for q1 and q2 found when using
KK = 4, C = 35 and roulette wheel as a selector: q1 = [0.023, 0.036] and q2 = [0.036, 0.050].
Increasing ∆P to 0.0005 results in a λmin = 5 for both sub chromosomes. The same is done
for the begin point of the sheet pile wall: s0 = [180, lc − lspw]. λspw is kept the same and now
represents a ∆P of 15 meters.

The total chromosome length now became 15 and Pm = Pf is taken to be 1/15 = 0.667 ≈ 0.07.
The total possible number of different chromosomes is now 32728, which is in the range of
the memory size that was used for C = 35 in the previous subsection. NOT was now set to
50, in order to have more statistical data. The results of the new trials are listed in tables
(5.8) and (5.9).

case q1,min q1,max ∆q1 q2,min q2,max ∆q2 φmax φave φmin
KK = 4 0.0276 0.0310 0.0034 0.0419 0.0464 0.0045 0.0740 0.0733 0.0728
C = 35 0.0238 0.0322 0.0084 0.0405 0.0491 0.0086 0.0740 0.0734 0.0727
RW 0.0234 0.0314 0.0080 0.0414 0.0495 0.0081 0.0740 0.0736 0.0728

Table 5.8: lspw = 1000 (fine tune) - Q and φ

case Times found Gmin Gmax Σmin Σmax memory size Duration

KK = 4 16 2 99 0.00021 0.002221 26014 0:15:11
C = 35 5 1 98 0.000161 0.001948 32013 0:21:03
RW 10 3 99 0.000194 0.002108 29639 0:19:47

Table 5.9: lspw = 1000 (fine tune) - Times found G, Σ, memory size and duration

From the result obtained it seems that tournament selection is to be preferred. 16 out of 50
trials have resulted in the highest fitness found, where roulette wheel only has 10 out of 50 and
Ranking only half of that. From the memory size it is clear that less different chromosomes
need to be calculated to get more good results compared to C and RW. φmax, φmax and φmin
do not give preference to one of the three selecting methods, but ∆q1 and ∆q2 again are in
favor of KK, since the solution area is much smaller. As a result the selection technique used
later on in this thesis will be KK = 4.

5.2.4 Influence of the population size and number of generations

To see if the population size has influence, it is doubled to 100. The number of fittest found
was 15, so the conclusion is that the original population size was already sufficient. The
calculation time stayed under 25 minutes and 470171 out of 500000 calculations were saved.
The memory size was thus 29829.

Using 150 generations, the number of fittest solutions found was 19 and 19 out of 50 found
their fittest solution for γ > 100. The calculation was done in less than 20 minutes, and the
memory size was 28079. Therefore it can be said that in this case increasing the number of
generations has a bigger impact. But the extra calculation load, not only more generations but
also more different chromosomes, lead to conclusion not to increase the number of generations.

60

5.2.5 Interchanging mutation and antimetathesis

In [23] it was stated that mutation and antimetathesis best take place interchangingly. The
algorithm developed allows the user to decide whether to do so or not because of the following
surprising results as listed in tables (5.10) and (5.11)

case q1,min q1,max ∆q1 q2,min q2,max ∆q2 φmax φave φmin
KK = 4(i = 1) 0.0251 0.0322 0.0071 0.0405 0.0482 0.0077 0.0740 0.0732 0.0727
KK = 4(i = 0) 0.0264 0.0310 0.0046 0.0419 0.0473 0.0054 0.0740 0.0735 0.0728

Table 5.10: Influence of interchangingly mutation and antimetathesis for lspw = 1000 (fine tune) - Q
and φ

case Times found Gmin Gmax Σmin Σmax memory size Duration

KK = 4(i = 1) 10 0 80 0 0.002285 17070 0:10:50
KK = 4(i = 0) 16 0 99 0 0.002381 26505 0:16:44

Table 5.11: Influence of interchangingly mutation and antimetathesis for lspw = 1000 (fine tune) -
Times found G, Σ, memory size and duration

In this tables i = 1 means the algorithm was run with interchangingly using mutation and
antimetathesis and i = 0 if first mutation and then antimetathesis took place for every
generation. For i = 1 only 10 fit results were found where for i = 0 the number was 16.
The number of unique chromosomes was also much lower (17070 compared to 26505) so the
solution area was better searched for when first applying mutation and then antimetathesis.
The average and minimum fitness function were also higher when i = 0 and the solution
area (∆q1,∆q2) was smaller as well. In every aspect the use of antimetathesis after mutation
seemed to be better.

Because these results were surprising, the comparison was made again using 250 trials in
order to be sure not to have statistical influence. The results acknowledged the results listed
before. Therefore the algorithm will be used with antimetathesis after mutation.

5.2.6 Refreshment

Figure (5.4) shows the fitness evolution of 6 trials for KK = 4.

The fitness evolution is clearly stepped. During different generations the fitness remains
constant until a fitter chromosome is created by chance: two chromosomes crossed over and
generated a fitter offspring, the chromosome was mutated or underwent antimetathesis and
became fitter, or a combination. From this figure it seems that the generations before a jump
in fitness takes place there is a temporary reduction, but this can not be because the fittest
function is always passed from one generation to another. Some trials never seem to know an
increase of fitness. One idea is to refresh the population with chromosomes. Three techniques
are tested:

61

0,0710

0,0715

0,0720

0,0725

0,0730

0,0735

0,0740

0 20 40 60 80 100

m

a

x

f

i

t

n

e

s

s

(

-)

generation number (-)

Figure 5.4: φmax as function of γ

1. inputting new chromosomes, randomly created

2. inputting a number of mutated copies of the fittest chromosome from the last generation

3. inputting a number of flipped copies of the fittest chromosome from the last generation

All three methods have been implemented in the algorithm and can be used using roulette
wheel and tournament selection. Table (5.12) shows the obtained results for three combina-
tions carried out to see if there was a positive influence.

62

refresh

Combination Times found φmax φave φmin memory

maxTimes = 35, new = 25 16 0,0740 0,0736 0,0728 30650
maxTimes = 35, new = 10 16 0,0740 0,0735 0,0728 28934
maxTimes = 15, new = 10 14 0,0740 0,0728 0,0737 30746

refresh with forced mutation

Combination Times found φmax φave φmin memory

maxTimes = 35, new = 25 9 0,0740 0,0733 0,0728 24848
maxTimes = 35, new = 10 15 0,0740 0,0733 0,0728 25255
maxTimes = 15, new = 10 11 0,0740 0,0733 0,0728 24783

refresh with forced antimetathesis

Combination Times found φmax φave φmin memory

maxTimes = 35, new = 25 14 0,0740 0,0732 0,0728 24116
maxTimes = 35, new = 10 10 0,0740 0,0732 0,0728 25027
maxTimes = 15, new = 10 13 0,0740 0,0733 0,0728 22831

Table 5.12: Influence of refreshing the population size for KK = 4

In the table ’maxTimes’ is the number of generations that the maximum fitness is allowed
not to increase. For every generation that the maximum fitness is not increasing a counter is
incremented and when as high as maxTimes a number, ’new’, of new chromosomes is added
to the population size. Refreshing is programmed to take place after selection, mutation and
antimetathesis took place. Refreshing with new chromosomes gave the best results. As was
to be expected, more different chromosomes were created for a lower maxTimes and when a
lot of new chromosomes were added.

Compared to the results obtained without refreshing (tables 5.8 and 5.9) (φmax = 0.074, φave =
0.0733, φmin = 0.0728, Times found = 16 and memory = 26014) no improvement was made.
Refreshing with forced mutation and with forced antimetathesis is therefore not interesting.
Refreshing with new chromosomes worked as well when the number of maxTimes allowed was
high enough. When after 15 times the population was replenished with new chromosomes the
number found was only 14, which indicates that the convergence progress was disturbed.

Since no real improvement was noticed no refreshing will take place in the following calcula-
tions.

5.3 Objective 2 and 3: implementation of a sheet pile wall -
comparison for 5 different lengths

In the previous section, the use of one sheet pile was used. In real life it is not sufficient
to only know results for one length. The management will want to make a comparison
between different possibilities. For the aquifer studied here it is impossible to make detailed
calculations but it is possible to make a comparison between different sheet pile wall lengths.
In what follows the algorithm will be used to calculate 4 more sheet pile walls with a length

63

of 800, 600, 400 and 200 m. The approach that leads to the optimum results is the same as
applied before.

In a first step the algorithm is run for a search space that for sure holds the optimum solution.
This will lead to a candidate solution space that is much smaller than the original search space.
In a second step, the new search space will be searched again, but now with a higher precision
(∆P).

The initial search space has three variables Q1, Q2 and s0. s0 can range between the begin of
the coast (s = 0) and lc − lspw and the flow varies between 0.01 and 0.05 m3/s in each well.
∆P = 0.002 m3/s for the flow and 20 m for the sheet pile wall. The sub chromosomes should
then at least have a length of 5, 5 and 6 genes and the total chromosomes length is 16. In
the case of the sheet pile wall of 200 m, the chromosome has one more gene to meet this step
of 20 m. Pm = Pf = 1/16 (1/17) = 0.0625(0.06).

5.3.1 Sheet pile wall of 1000 m

The results for a sheet pile of length 1000 m are listed in table (5.13). They are the detailed
version of the calculations in table (5.8) for KK = 4. In this table NOO is the number of
occurrences. The total number of occurrences is 50.

NOO(−) φ(−) Q1(m3/s) Q2(m3/s) s0,min(m) s0,max(m)

16 0.07400 0.02761 0.04639 649.24 649.24
3 0.07397 0.02803 0.04594 649.24 649.24
1 0.07355 0.02761 0.04594 649.24 649.24
1 0.07345 0.02887 0.04458 649.24 649.24
1 0.07310 0.02761 0.04548 649.24 649.24
1 0.07294 0.02971 0.04323 649.24 649.24
4 0.07290 0.03013 0.04277 649.24 649.24
23 0.07284 0.03097 0.04187 452.46 588.69

Table 5.13: Results for lspw = 1000m, second set of trials

For the fittest solutions the sheet pile wall is always placed as much to the right as possible.
Good fitness is obtained by pumping most of it from W2, so that is why the sheet pile wall
is placed there. In less fitter solutions the sheet pile wall moves towards W1 which allows
pumping more from that well.

5.3.2 Sheet pile wall of 800 m

The results were very satisfactory since only two different fitnesses were found, the results are
listed in table (5.14).

64

NOO(−) φ(−) Q1(m3/s) Q2(m3/s) s0,min(m) s0,max(m)

14 0.0729 0.0294 0.0435 849.2423 849.2423
29 0.0716 0.0319 0.0397 350.4809 539.2014
5 0.0716 0.0306 0.0410 444.8412 754.8820
1 0.0716 0.0281 0.0435 849.2423 849.2423
1 0.0716 0.0255 0.0461 849.2423 849.2423

Table 5.14: Results for lspw = 800m, first set of trials

The fittest chromosome represented a sheet pile wall that started as much to the right as
possible. Because the sheet pile wall was now only preventing inflow from W2, Q1 had
dropped below the solution found in objective one. W2 on the other hand could pump a lot
without leading to sea water intrusion.

All the other trials resulted in a slightly less fit solution. 29 times a solution was found by
placing a sheet pile wall somewhere on the coastline in between the two wells. Doing so, both
wells can pump a little bit extra without leading to sea water intrusion, compared to objective
1.

From this first set of trials a new search area was constructed: Q1 ∈ [0.024, 0.032], Q2 ∈
[0.038, 0.048] and s0 ∈ [340, lc − lspw]. ∆P was now decreased in order to have a finer solution
domain. The new ∆P was taken to be 0.0005 m3/s for the wells and 10 m for the sheet
pile wall. To achieve this the sub chromosomes had to have a minimum of 5, 5 and 6 genes,
creating a chromosome of 16. Table (5.15) lists the results for the second set of trials.

NOO(−) φ(−) Q1(m3/s) Q2(m3/s) s0,min(m) s0,max(m)

4 0.07329 0.02916 0.04413 849.24 849.24
3 0.07303 0.02890 0.04413 849.24 849.24
1 0.07258 0.02813 0.04445 849.24 849.24
1 0.07252 0.02968 0.04284 849.24 849.24
1 0.07245 0.02865 0.04381 849.24 849.24
1 0.07239 0.03019 0.04219 849.24 849.24
11 0.07232 0.03174 0.04058 437.00 461.25
28 0.07226 0.03071 0.04155 647.16 776.49

Table 5.15: Results for lspw = 800m, second set of trials

The solutions with the highest fitness are these when a sheet pile wall is placed as much as
possible to the end of the coast. 39 solutions are less fit and have the sheet pile wall placed in
between the wells. Two groups of such solutions were found. The fittest (φ = 0.07232) has a
sheet pile wall with start point in the range of s0 ∈ [437.00, 461.25] m and the other solutions
are ranged between s0 ∈ [647.16, 776.49]. Both solution groups are within the range from the
first set of trials, as it is supposed to be.

65

5.3.3 Sheet pile wall of 600 m

The results for the first set of trials is listed in table (5.16). Almost half of the time the fittest
solution was found. The sheet pile wall is placed so that it is in front of the second well. As a
result W1 can not pump more than was calculated in objective 1. In fact the maximum flow
pumped from this well is smaller than calculated in the first objective because of the influence
of W2 on the boundary nodes in front of W1. The same table also shows in a very nice way
what the relation between Q1, Q2 and s0 is. As a general rule: the more pumped from W2

the closer s0 is placed towards it. This is also clear from table (5.17) that lists the second
set of trials. The smaller search domain was prepared in a similar way as in the previous
subsection: Q1 ∈ [0.026, 0.032], Q2 ∈ [0.038, 0.043] and s0 ∈ [260, 1040]. Q1, Q2 were each
represented by a sub chromosome with 4 genes and s0 by 7 genes, in order to meet the same
∆P of 0.0005 m3/s and 10 m. The total chromosome had a length of 15 (32768 different
candidate solutions) and Pm = Pf was set to be 0.07. The results in row 3 and 4 are not
the same but they are different on more than 5 decimals after the comma. By rounding the
values this difference became invisible.

NOO(−) φ(−) Q1(m3/s) Q2(m3/s) s0,min(m) s0,max(m)

22 0.0716 0.0306 0.0410 849.39 982.62
8 0.0703 0.0319 0.0384 266.47 682.84
4 0.0703 0.0306 0.0397 532.95 816.08
13 0.0703 0.0306 0.0397 632.88 1032.59
2 0.0690 0.0294 0.0397 749.46 816.08
1 0.0690 0.0268 0.0423 649.53 649.53

Table 5.16: Results for lspw = 600m, first set of trials

The results from the second set of trials showed a very good convergence. 49 as fit chromo-
somes were found with the same flow rates. These solutions all placed the sheet pile wall in
front of W2. If the management wants W1 to at least pump the same as in objective 1, then
the engineer should return to the first set of trials and take a search area that only includes
the solutions where Q1 is bigger than calculated in objective 1.

NOO(−) φ(−) Q1(m3/s) Q2(m3/s) s0,min(m) s0,max(m)

49 0.07173 0.03040 0.04133 843.46 1027.72
1 0.07153 0.03120 0.04033 659.21 659.21

Table 5.17: Results for lspw = 600m, second set of trials

5.3.4 Sheet pile wall of 400 m

From table (5.18) it becomes very clear in what way a genetic algorithm works. 24 very
fit solutions were found, but from row 1 it is clear that it was possible to find even fitter
solutions. Genetic algorithms are thus good solution finders, but they do not always return
the fittest. To know the exact solution traditional calculations should then be carried out to
explore the solution area around the fittest chromosomes found. Or as done here, a part of

66

the search domain is further explored. The algorithm found as was expected protection of
W2 and lower values of Q1. The last row lists solutions that are less fit than what was found
without sheet pile wall.

NOO(−) φ(−) Q1(m3/s) Q2(m3/s) s0,min(m) s0,max(m)

10 0.0716 0.0306 0.0410 1050.95 1050.95
24 0.0703 0.0306 0.0397 793.17 1209.58
10 0.0703 0.0294 0.0410 1050.95 1229.41
6 0.0690 0.0294 0.0397 733.68 1150.10

Table 5.18: Results for lspw = 400m, first set of trials

In a a second set of trials executed (∆P as before) the trials all result in the same φ =
0.07140 with Q1 = 0.03040 and Q2 = 0.0410. The sheet pile wall protected W2 and s0 ∈
[1050.16, 1157.46]. The reader might realize that the fitness has gone down. This can be
explained by looking at the group of candidate solutions considered. In the second set of
candidate solutions, Q1 = 0.0306 was not an element. The closest was Q1 = 0.0304 which
results in a little less flow rate and hence a little bit less fit solution found.

5.3.5 Sheet pile wall of 200 m

In the last case, exactly in the same way as for the other lengths, the following results were
calculated, listed in table (5.19). More than half of the results result in a sheet pile wall
randomly generated between 57 m and 1449.24 m. Taking a closer look at the flows in the
wells, the reader understands that the sheet pile is not being beneficial in these situations. It
does not matter where it is placed because there will not be sea water intrusion in the first
place, as was calculated in the first objective. 5 of the results lead to fitter solutions that are
beneficial.

NOO(−) φ(−) Q1(m3/s) Q2(m3/s) s0,min(m) s0,max(m)

5 0.07032 0.03065 0.03968 1449.24 1449.24
29 0.06903 0.03065 0.03839 57.06 1449.24
13 0.06903 0.02935 0.03968 1426.42 1449.24
2 0.06774 0.02935 0.03839 992.79 1015.61
1 0.06774 0.02806 0.03968 992.79 992.79

Table 5.19: Results for lspw = 200m, second set of trials

5.3.6 Summary

For five different sheet pile walls the best location of the sheet pile wall was calculated in order
to optimize the low in both wells. Table (5.20) summarizes the results found in subsections
(5.3.1) to (5.3.5).

67

lspw(m) φ(−) Q1(m3/s) Q2(m3/s) s0,min(m) s0,max(m)

1000 0.07400 0.02761 0.04639 649.24 649.24
1000 0.07284 0.03097 0.04187 452.46 588.69
800 0.07329 0.02916 0.04413 849.24 849.24
800 0.07232 0.03174 0.04058 437.00 461.25
800 0.07226 0.03071 0.04155 647.16 776.49
600 0.07173 0.03040 0.04133 843.46 1027.72
600 0.07153 0.03120 0.04033 659.21 659.21
400 0.07140 0.03040 0.04100 1050.16 1157.46
200 0.07032 0.03065 0.03968 1449.24 1449.24

Table 5.20: Summary: results for lspw = 200− 1000 m

As was supposed to be φ increases with lspw. Two groups of solutions were found for long
sheet pile walls. The first group placed a sheet pile wall as much as possible to the right in
order to protect W2 and a second placed the sheet pile wall in between W1 and W2. In this
first group Q1 went well below the value calculated from the first objective, meaning that W1

is not fully used. In the second group W1 was protected and the flow could be higher again.
When shorter sheet pile walls were used, W2 was always protected by placing the sheet pile
wall in front of it.

5.4 Sheet pile wall versus one extra well

The management can now, based upon the results from the previous section, decide to see if
it is maybe not a better idea to use an extra well instead of a sheet pile wall. For example
an old well W3 might be located in zone 0 with coordinates (1050, 750), and the management
considers reopening it. Running the algorithm for this extra well, where Q1, Q2 and Q3 ∈
[0.01, 0.05] with ∆P = 0.002 and λ = 5 for every sub chromosome lead to the results listed
in table (5.21).

NOO(−) φ(−) Q1(m3/s) Q2(m3/s) Q2(m3/s)

49 0.0713 0.0281 0.0319 0.0113
1 0.0700 0.0255 0.0281 0.0165

Table 5.21: Influence of one extra well W3(1050, 750), second set of trials

Very good convergence was achieved (49/50 trials) and the total extracted flow was 0.0713
m3/s. Comparing to the results when using a sheet pile wall (table (5.20)), it can be concluded
that only in the case of a short sheet pile wall (lspw = 200 m), the use of this extra well was
found to be beneficial.

68

Chapter 6

Discussion and conclusions

This masters thesis combined the use of a genetic algorithm with a boundary element method
with implementation of a sheet pile wall. As a result an application was developed with pre
(database) and post processor (Microsoft Excel). While writing the algorithm some points
of improvement became visible. Two memories were included. A first memory stored all the
well positions calculated and a second all the chromosomes that were calculated. Doing so
very big time and calculation reductions were achieved. In the first version a long time was
spent on calculating the matrix equation H ·u = G ·un and then in a second step sorting it to
A ·X = Y so that it could be solved by applying gauss elimination. A first improvement was
not to calculate H and G but A and B directly. Next to that it was clear that big parts of
A and B never changed during the generations. Therefore A and B were structured in such
a way that all the elements that never changed were grouped together. They could then just
be copied and a lot of calculation work was cut doing so.

The goal of doing this thesis was to find out what the influence could be of placing a sheet pile
wall on an existing flow scheme pumped from two wells. In a first objective the maximum flow
through the two existing wells was calculated in order not to have sea water intrusion. The
results found were satisfactory: Q1 = 0.03129 m3/s and Q2 = 0.03829 m3/s and Q1 = 0.03135
m3/s and Q2 = 0.03823 m3/s. The fitness for both solutions was 0.06958, which was higher
than obtained by Dr. Petala (0.069). That two chromosomes found to be exactly as fit can
be explained by the discontinuous search space and the fact that both sub chromosomes (Q1

and Q2) had the same length and the same upper and under values were used.

The second and third objective were combined. Before running the algorithm, a set of good
input parameters for the genetic algorithm was researched. Different factors were tested for
the following input data: PS = 50, NOG = 100, NOT = 10, Pc = 0.35, Pm = Pf = 0.06, ε = 1
and mutation and antimetathesis both took place in every generation. The sheet pile wall
had a length of 1000 m.

A first parameter tested was the selection type used. Three selection methods were tested
but using constant selection with KK = 4 showed to be better. Compared to roulette wheel
selection and ranking, tournament selection had calculated a smaller amount of candidate
solutions. The memory size and the required calculation time were thus smaller. A second
argument to use KK = 4 was that the fittest solution found showed up more using this
selection technique.

69

A small test was made where mutation and antimetathesis could take place one per chromo-
some or once per gene. Once per gene showed not to be sufficient to find good results. On the
other hand allowing mutation and antimetathesis for every gene proved to be much better.

The influence of the population size and the number of generations was considered. Increasing
the population size did not result in finding extra fit solutions. Increasing the number of
generations resulted in a few more fittest solutions found. Because only few extra were found
and the number of trials increased by 50, the decision was made not to increase the number
of generations carried out.

The second last parameter tested was to use mutation and antimetathesis interchangingly
or not. Interchanging use resulted in less fit solutions found. The memory size was also
smaller which indicated that the solution area was not searched enough. When for every trial
first mutation and then antimetathesis took place, the results proved to be better. There for
mutation and antimetathesis was used in the last way.

The last parameter researched was called refreshment. Plotting φmax(γ) showed that less
fit solutions suffered from very long periods of not increasing their fitness. Therefore the
idea was to inject new chromosomes in the population in the hope that they would lead to
fitter chromosomes in the next generation. It was clear already from previous test that the
algorithm sometimes needed a long time before a fitter chromosome was created. Therefore
test were carried out that injected new chromosomes after a very short time of not having
increased the fitness and after a longer period were the algorithm had more time to find
fitter solutions. Three different injections were carried out: in a first a number of randomly
populated chromosomes were added to the population size (similar to ranking). When re-
freshment took place soon after stabilization of φ, the number of fittest chromosomes found
decreased. Allowing the algorithm more time before refreshing did not improve the results,
but only caused more calculations to be carried out. The idea was then to refresh with highly
fit chromosomes from the last generation. They would first be mutated or would first undergo
antimetathesis with a probability of 100% in only one of the genes. No clear relation between
the number of chromosomes refreshed and when done so could be made, but all the results
were less fit compared to when no refreshment was used. Therefore the idea of refreshment
was not used in the calculations that would be carried out next.

Now that the settings for the genetic algorithm were known objective 2 and 3 were studied.
Using the algorithm 5 different sheet pile wall lengths were studied = 200, 400, 600 and 800
m. For long sheet pile walls two groups of solutions seemed to be calculated. A first protected
W2 by placing the sheet pile wall in front of this well. This lead to an increase of Q2, but
Q1 was generally found to be less than was calculated in objective 2. The second group of
solutions placed the sheet pile wall in between the two wells. Doing so both could extract
more water from the aquifer. The first group was found to be always fitter than the last
group. The decision maker will thus have to except if not fully using the capacity of W1 is
acceptable.

For shorter sheet pile walls the decision maker is not having a lot of choice because all runs
point out that the sheet pile wall always protects W2. There was a very clear relation between
the length of the sheet pile wall and the total flow extracted: longer sheet pile walls lead to
more extracted water without sea water intrusion. The results are listed in table (6.1).

70

lspw(m) φ(−) Q1(m3/s) Q2(m3/s) sb,min(m) sb,max(m)

1000 0.07400 0.02761 0.04639 649.24 649.24
1000 0.07284 0.03097 0.04187 452.46 588.69
800 0.07329 0.02916 0.04413 849.24 849.24
800 0.07232 0.03174 0.04058 437.00 461.25
800 0.07226 0.03071 0.04155 647.16 776.49
600 0.07173 0.03040 0.04133 843.46 1027.72
600 0.07153 0.03120 0.04033 659.21 659.21
400 0.07140 0.03040 0.04100 1050.16 1157.46
200 0.07032 0.03065 0.03968 1449.24 1449.24

Table 6.1: Summary: results for lspw = 200− 1000 m

The algorithm was used a last time to solve an obvious question the decision maker would
ask when seeing the previous results. One interesting question would be if it’s not better to
place an extra well. To test this a third well, W3 = (1050, 750), was added to the aquifer
and the optimum solution calculated. The best results calculated were: Q1 = 0.0281, Q2 =
0.0319, Q3 = 0.0113 m3/s and the total flow rate was 0.07129 m3/s. This result was only
better compared to the use of a sheet pile wall of 200 m.

6.1 Reliability of the designed algorithm

In a first step the boundary element method was designed without a sheet pile wall. For this
algorithm a lot of school book examples are available and the solutions obtained with the
algorithm were compared with the examples from the book. The results were satisfying.

In a second step, a genetic algorithm was developed. This algorithm was first tested for simple
fitness functions that did not use the boundary element method. The algorithm did as was to
be expected and in a third step the boundary element method and the genetic algorithm were
combined. The candidate solutions obtained from the combined use where then compared to
the results obtained via the traditional solving way (calculating each candidate solution).

In a last step the use of a sheet pile wall was implemented. This made it possible to change the
users input of the boundary elements based upon the chromosome calculated by the genetic
algorithm.

6.2 Further research

In this thesis one fitness function was used, proposed by Katsifarakis, but different fitness
functions could be developed as well. One possibility could be to include the cost and benefit
of placing a sheet pile wall. Some tests have been done with a fitness function that includes
these parameters as well but did not result in useful information. During those test both
the length and the begin point of the sheet pile wall were a variable. The idea was to look
for the best begin point and length of the sheet pile wall in combination with the best flow

71

extracted from the two existing wells, in such a way that the sheet pile benefit was as high
as possible. The results constantly led to a sheet pile wall over the entire length of the coast
and maximum flow allowed in the wells or no extra flow in the wells and a sheet pile wall
with length 0. In order to succeed in finding a good fitness function for this problem more
information should be available about the aquifer in order to make the test realistic: How
deep does the sheet pile wall need to go? How much water can be extracted from one well,
how much can the aquifer provide?

It would be very interesting to further invest the influence of the parameters such as cross
over, mutation, number of generations, antimetathesis, refreshing, refreshing with mutated
copies of the fittest chromosome, ... The software that is developed allows the user to easily
play with all these parameters and provides an excel file with the results. It would thus be
an ideal start point for this research.

Very interesting as well would be to adapt the genetic algorithm so that it can calculate the
best set of parameters itself. It would also be interesting to automatically do the search that
was now done manually (gradually closing the search domain (δq1, δq2, δsb) and increasing
∆P).

The possibilities are in a way endless: 3D boundary element method, use of non constant
boundary elements, self adapting genetic algorithms, other chromosome representations, pre-
processor that allows the user to draw the boundary elements, postprocessor that output
visual results, etc.

It must be mentioned as well, that the writer of this thesis is a civil engineer and not a
computer engineer, the code written works and some mathematical improvement have been
realized, but without any doubt there are improvements to be made in the syntax. One
example is the memory the algorithm uses. It is accessed now by looping from the first to the
last position in the array. Looping over 20000 positions takes a ’long’ time and optimization
is possible.

72

Appendix A

Post processor

Listed next are two worksheets of the post processor. The first sheet is called ’summary’
and gives information about the input data, the results of the set of trials, some statistical
information and the memory size. In a second called ’Results all trials’ the best solution for
every trial is given.

5 more work sheets are generated, but are not included here since they would take to many
pages:

1. Detail calculations well saved

2. Detail calculations saved

3. Detail minimum fitness

4. Detail average fitness

5. Detail maximum fitness

In these worksheets, the user can follow how the memory is stored and how the fitness
evolution went.

73

Title: Objective 3: l_spw = 1000, KK = 2

Author: Koen Wildemeersch

Starttime: 27 mei 2010 - 13:46:06

Endtime: 27 mei 2010 - 14:01:07

Duration: 0:15:01

PS: 50 Selection method: Selection constant

NOG: 100 with constant: 2

NOT: 10 Pc: From: 0,35 To: 0,35

elitism: TRUE Pm: From: 0,06 To: 0,06

fitness function: 0

C1: 70 C3: 0

C2: 7 C4: 0

Using sheet pile wall: TRUE

Using fixed sheet pile wall: TRUE

Length sheet pile wall: 1000 m

Min. bound. sheet pile wall: 0 m

Max. bound. sheet pile wall: 649,24 m

chr length start position: 5

chr length for length spw: - m

General

Calculation Duration

Parameters genetic algorithm

fitness function used

Sheet pile wall

74

nr Xmin Xmax Ymin Ymax Qmin Qmax chr_l

0 500 500 700 700 0,01 0,05 6

1 1400 1400 800 800 0,01 0,05 6

trial Trial n° (-) Well n° (-) X (m) Y (m) Q (m3/s)

1 0 500 700 0,025873

1 1400 800 0,04746

sb: 649,24 m

se: 1649,2 m

l: 1000 m

Max fitness: 0,0733 (-)

Tot. Inflow: 0 m3/s

NOLWI: 0 (-)

Gmax: 12 (-)

CV: 0,0016 (-)

Lowest maximum fitness of all trials: 0,0721

Average maximum fitness of all trials: 0,073

Standard deviation on fitness: 0,0004

minimum generations required to find max of trial: 63

Calculations not carried out because of memory fitness: 18497 / 50000

memory size fitness: 31503

Calculations not carried out because of memory well: 63004 / 63006

memory size wells: 2

Wells included

Best Result

Statistics

75

trial Trial n° Max. Fitness Well n° X Y Q CV Tot. Inflow NOLWI Gmax sb se l

 (-) (-) (-) (m) (m) (m3/s) (-) (m3/s) (-) (-) (m) (m) (m)

0 0,072698413 0 500 700 0,030952 0,000951 0 0 34 586,41 1586,41 1000

1 1400 800 0,041746

1 0,073333333 0 500 700 0,025873 0,001585 0 0 12 649,24 1649,24 1000

1 1400 800 0,047460

2 0,072698413 0 500 700 0,030952 0,001585 0 0 26 565,47 1565,47 1000

1 1400 800 0,041746

3 0,072698413 0 500 700 0,030952 0,005682 0 0 63 586,41 1586,41 1000

1 1400 800 0,041746

4 0,073333333 0 500 700 0,025873 0,004110 0 0 54 649,24 1649,24 1000

1 1400 800 0,047460

5 0,072063492 0 500 700 0,029683 0,000951 0 0 29 502,64 1502,64 1000

1 1400 800 0,042381

6 0,073333333 0 500 700 0,027778 0,003795 0 0 60 649,24 1649,24 1000

1 1400 800 0,045556

7 0,073333333 0 500 700 0,029048 0,001585 0 0 59 649,24 1649,24 1000

1 1400 800 0,044286

8 0,073333333 0 500 700 0,029048 0,000951 0 0 17 649,24 1649,24 1000

1 1400 800 0,044286

9 0,073333333 0 500 700 0,027143 0,001585 0 0 23 649,24 1649,24 1000

1 1400 800 0,046190

76

Appendix B

Extract of source code

Included in this appendix is run.cs. This file includes all the functions that are needed for the
calculation of the boundary element method and the genetic algorithm. The user interface is
included in other files that have not been included to limit the size of this report.

77

1C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

1 using System;
2 using System.Collections.Generic;
3 using System.ComponentModel;
4 using System.Data;
5 using System.Drawing;
6 using System.Linq;
7 using System.Text;
8 using System.Windows.Forms;
9 using System.Data.OleDb;

10 using System.Collections;
11 using System.IO;
12 using Excel = Microsoft.Office.Interop.Excel;
13
14 namespace KoenWildemeerschThesisWithInterface
15 {
16 public partial class Run : Form
17 {
18 //variables that can be used all over the form (run.cs)
19
20 //0. Date
21 DateTime dateTimeBegin;
22 DateTime dateTimeEnd;
23
24 //1. Random
25 static Random Random = new Random();
26
27 //2. variables to be sized later (used after first setup)
28 static double[][] line = new double[0][]; //after adding the SPW
29 static double[] XN = new double[0]; //after adding the SPW
30 static double[] YN = new double[0]; //after adding the SPW
31 static int[][] zone = new int[0][]; //after adding the SPW
32 static bool[] lineOnCoast = new bool[0]; //after adding the SPW
33 static double[] L = new double[0]; //after adding the SPW
34 static int[] K1 = new int[0]; //after adding the SPW
35 static double[] BV = new double[0]; //after adding the SPW
36
37 //3. Variables that contain the inputdata
38 static int[] uK1 = new int[0]; //this array contains the type of boundary condition (0 =

potential is known, 1 = flux is known)
39 static double[] uBV = new double[0];
40 static double[,] A = new double[0, 0];
41 static double[,] Bt = new double[0, 0]; //before writing to B, write here
42 static double[] B = new double[0];
43 static double[] X = new double[0]; //array that holds the solutions af A.X = B
44 static int[] plaatsB = new int[0];
45 static int[] plaatsX = new int[0]; //array that holds all the position of the unknown
46 static int[] uplaatsX = new int[0]; //for intitial
47 static int[] uplaatsY = new int[0];
48 double[] U = new double[0]; //array U holds the values of u after calculation
49 double[] Un = new double[0]; //array Un holds the values of un after calculation
50 static double[][] uline = new double[0][];
51 static double[] uXN = new double[0];
52 static double[] uYN = new double[0];
53 static int[][] uzone = new int[0][]; // has the value of the zone(s) a nodepoint is in
54 static double[][] well = new double[0][];
55 static bool[][] hwell = new bool[0][];
56 static int[] chrLengthWell = new int[0]; //stores the value of the chromosome length
57 static double[] dmin = new double[0];
58 static double[] dmax = new double[0];
59 static double[] T = new double[0];
60 static string[] Tname = new string[0];
61 static bool[] ulineOnCoast = new bool[0];
62 double[] uL = new double[0];
63 int[] lineorder = new int[0];
64 double[] cumulLineEnd = new double[0];
65 double beginSpw = 0;
66 double endSpw = 0;
67 int lineBegin = 0;
68 int lineEnd = 0;
69
70 //parameters for GA
71 int ps, numberofruns, numberOftrials, fitnessFunction, selectionType, selectionConstant,

chr1_LengthSpw, chr2_LengthSpw, numberToRefresh, maxTimesTheSame;
72 double pc_begin, pc_eind, pm_begin, pm_eind, C1, C2, C3, C4, spw_length, spw_min, spw_max;

78

2C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

73 bool spw, elitism, fixed_spw_length, refresh, refreshByForcedMutation, refreshByForcedFlip,
interchange;

74 string projectName, author;
75
76 //Arrays needed for the memory of the algorithm
77 string[][] CalculatedChromosomes = new string[0][];
78 double[][] CalculatedWellPosition = new double[0][];
79
80
81 double[] CalculatedFitness = new double[0];
82 double[] CalculatedWellZone = new double[0];
83 double[] CalculatedTotalInflow = new double[0];
84 int[] CalculatedTotalInflowNodes = new int[0];
85
86 int CalculationsSaved = 0;
87 int CalculationsSavedWell = 0;
88
89 bool needsToBeCalculated = new bool();
90 bool needsToBeCalculatedWell = new bool();
91
92 double calculatedFitnessTemp = 0;
93
94
95 public Run(int project_ID)
96 {
97 InitializeComponent();
98 label1.Text = project_ID.ToString();
99

100 }
101
102 private void Run_Load(object sender, EventArgs e)
103 {
104 //Connect to database and fill the arrays
105 //set the id
106 string project_ID = label1.Text.ToString();
107
108 //open the db
109 OleDbConnection objConn = new OleDbConnection("Provider=Microsoft.JET.OLEDB.4.0;data source

=C:\\Users\\Koen Wildemeersch\\Desktop\\DataBase\\2000ThesisV11.mdb");
110 objConn.Open();
111
112 //1. fill the listview with the zones
113 OleDbCommand objCommNUM = new OleDbCommand("select * from T WHERE [project_ID] = " +

project_ID + "", objConn);
114 OleDbCommand objComm = new OleDbCommand("select * from T WHERE [project_ID] = " +

project_ID + "", objConn);
115
116 OleDbDataReader objReaderNUM = objCommNUM.ExecuteReader();
117 OleDbDataReader objReader = objComm.ExecuteReader();
118
119 //1.a Count how many rows
120 int sizeArray = 0;
121 if (objReaderNUM.HasRows)
122 {
123 while (objReaderNUM.Read())
124 {
125 sizeArray++;
126 }
127 }
128
129 //1.b Resize
130 Array.Resize(ref T, sizeArray);
131 Array.Resize(ref Tname, sizeArray);
132
133 //1.c Fill
134 int iZone = 0;
135 if (objReader.HasRows)
136 {
137 while (objReader.Read())
138 {
139 T[iZone] = objReader.GetDouble(3);
140 Tname[iZone] = objReader.GetString(2);
141 iZone++;
142 }

79

3C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

143 }
144
145
146 //2. fill the listview with the lines
147 objCommNUM = new OleDbCommand("select * from lines WHERE [project_ID] = " + project_ID + ""

, objConn);
148 objComm = new OleDbCommand("select * from lines WHERE [project_ID] = " + project_ID + "",

objConn);
149
150 objReaderNUM = objCommNUM.ExecuteReader();
151 objReader = objComm.ExecuteReader();
152
153 //2.a Count how many rows
154 sizeArray = 0;
155 if (objReaderNUM.HasRows)
156 {
157 while (objReaderNUM.Read())
158 {
159 sizeArray++;
160 }
161 }
162
163 //2.b Resize
164 Array.Resize(ref uline, sizeArray);
165 Array.Resize(ref uzone, sizeArray);
166 Array.Resize(ref ulineOnCoast, sizeArray);
167 Array.Resize(ref uK1, sizeArray);
168 Array.Resize(ref uBV, sizeArray);
169
170 //2.c Fill
171 iZone = 0;
172 if (objReader.HasRows)
173 {
174 while (objReader.Read())
175 {
176 uline[iZone] = new double[4];
177 uzone[iZone] = new int[2];
178
179 uline[iZone][0] = objReader.GetDouble(2);
180 uline[iZone][1] = objReader.GetDouble(3);
181 uline[iZone][2] = objReader.GetDouble(4);
182 uline[iZone][3] = objReader.GetDouble(5);
183 uK1[iZone] = objReader.GetInt32(6);
184 uBV[iZone] = objReader.GetDouble(7);
185 uzone[iZone][0] = Array.IndexOf(Tname, objReader.GetString(8));
186 uzone[iZone][1] = Array.IndexOf(Tname, objReader.GetString(9));
187 if (uzone[iZone][0] == uzone[iZone][1])
188 {
189 uzone[iZone][1] = -1;
190 }
191 ulineOnCoast[iZone] = objReader.GetBoolean(10);
192 iZone++;
193 }
194 }
195
196 //3. fill the array with the wells
197 objCommNUM = new OleDbCommand("select * from wells WHERE [project_ID] = " + project_ID + ""

, objConn);
198 objComm = new OleDbCommand("select * from wells WHERE [project_ID] = " + project_ID + "",

objConn);
199
200 objReaderNUM = objCommNUM.ExecuteReader();
201 objReader = objComm.ExecuteReader();
202
203 //3.a Count how many rows, and the dimension of dmin and dmax
204 sizeArray = 0;
205 int sizeD = 0;
206 if (objReaderNUM.HasRows)
207 {
208 while (objReaderNUM.Read())
209 {
210 if (objReaderNUM.GetDouble(3) != objReaderNUM.GetDouble(4))
211 {
212 sizeD++;

80

4C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

213 }
214 if (objReaderNUM.GetDouble(5) != objReaderNUM.GetDouble(6))
215 {
216 sizeD++;
217 }
218 if (objReaderNUM.GetDouble(7) != objReaderNUM.GetDouble(8))
219 {
220 sizeD++;
221 }
222 sizeArray++;
223 }
224 }
225
226 //3.b Resize
227 Array.Resize(ref well, sizeArray);
228 Array.Resize(ref hwell, sizeArray);
229 Array.Resize(ref chrLengthWell, sizeArray);
230 Array.Resize(ref dmax, sizeD);
231 Array.Resize(ref dmin, sizeD);
232
233
234 //3.c Fill
235 iZone = 0;
236 int iDcounter = 0;
237
238 if (objReader.HasRows)
239 {
240 while (objReader.Read())
241 {
242 chrLengthWell[iZone] = objReader.GetInt32(9); //length of the chromosomes for the

well
243
244 well[iZone] = new double[4];
245 hwell[iZone] = new bool[3];
246
247
248 if (objReader.GetDouble(3) == objReader.GetDouble(4))
249 {
250 well[iZone][0] = objReader.GetDouble(3);
251 hwell[iZone][0] = false;
252 }
253 else
254 {
255 hwell[iZone][0] = true;
256 dmin[iDcounter] = objReader.GetDouble(3);
257 dmax[iDcounter] = objReader.GetDouble(4);
258 iDcounter++;
259 }
260 if (objReader.GetDouble(5) == objReader.GetDouble(6))
261 {
262 well[iZone][1] = objReader.GetDouble(5);
263 hwell[iZone][1] = false;
264 }
265 else
266 {
267 hwell[iZone][1] = true;
268 dmin[iDcounter] = objReader.GetDouble(5);
269 dmax[iDcounter] = objReader.GetDouble(6);
270 iDcounter++;
271 }
272 if (objReader.GetDouble(7) == objReader.GetDouble(8))
273 {
274 well[iZone][2] = objReader.GetDouble(7);
275 hwell[iZone][2] = false;
276 }
277 else
278 {
279 hwell[iZone][2] = true;
280 dmin[iDcounter] = objReader.GetDouble(7);
281 dmax[iDcounter] = objReader.GetDouble(8);
282 iDcounter++;
283 }
284 iZone++;
285 }//end while Read()

81

5C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

286 }//end if there are rows
287
288 //3.d Fill the other arrays, depending on the just resized arrays.
289 Array.Resize(ref uL, uline.GetLength(0));
290 Array.Resize(ref uXN, uline.GetLength(0));
291 Array.Resize(ref uYN, uline.GetLength(0));
292
293
294
295 //4. Load the GA settings
296
297 //4.1. create the paramters
298 //see begin
299
300 //4.2. Assign the values from the db.
301
302 objComm = new OleDbCommand("select * from GA WHERE [project_ID] = " + project_ID + "",

objConn);
303 objReader = objComm.ExecuteReader();
304
305 if (objReader.HasRows)
306 {
307 while (objReader.Read())
308 {
309 ps = objReader.GetInt32(2);
310 numberofruns = objReader.GetInt32(3);
311 numberOftrials = objReader.GetInt32(5);
312 pc_begin = objReader.GetDouble(6);
313 pc_eind = objReader.GetDouble(7);
314 pm_begin = objReader.GetDouble(8);
315 pm_eind = objReader.GetDouble(9);
316 elitism = objReader.GetBoolean(10);
317 spw = objReader.GetBoolean(11);
318 fitnessFunction = objReader.GetInt32(12);
319 selectionType = objReader.GetInt32(13);
320 selectionConstant = objReader.GetInt32(14);
321 C1 = objReader.GetDouble(15);
322 C2 = objReader.GetDouble(16);
323 C3 = objReader.GetDouble(17);
324 C4 = objReader.GetDouble(18);
325 fixed_spw_length = objReader.GetBoolean(19);
326 spw_length = objReader.GetDouble(20);
327 chr1_LengthSpw = objReader.GetInt32(21);
328 chr2_LengthSpw = objReader.GetInt32(22);
329 spw_min = objReader.GetDouble(23);
330 spw_max = objReader.GetDouble(24);
331 refresh = false;
332 refreshByForcedMutation = false;
333 refreshByForcedFlip = false;
334 interchange = false;
335 numberToRefresh = 10; //can be variable if successful
336 maxTimesTheSame = 10; //can be variable if successful
337 }
338 }//end if has rows
339
340 //5.1. create the paramters
341 //see begin
342
343 //5.2. Assign the values from the db.
344
345 objComm = new OleDbCommand("select * from project WHERE [ID] = " + project_ID + "",

objConn);
346 objReader = objComm.ExecuteReader();
347
348 if (objReader.HasRows)
349 {
350 while (objReader.Read())
351 {
352 projectName = objReader.GetString(1);
353 author = objReader.GetString(4);
354 }
355 }//end if has rows
356
357

82

6C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

358
359 //6. Close the database
360 objConn.Close();
361
362 /***
363 * Start the calculations
364 **/
365
366 //set max values for the progressbars
367 progressBar1.Maximum = numberofruns;
368 progressBar2.Maximum = numberOftrials;
369
370 //calculate the begin time
371 dateTimeBegin = DateTime.Now;
372
373 int NumberOfSubchromoses = dmin.GetLength(0);
374 if (spw == true)
375 {
376 if (fixed_spw_length == true)
377 {//when a fixed length is set: only one chromosome (begin point) needs to be set
378 NumberOfSubchromoses = NumberOfSubchromoses + 1;
379 }
380 else
381 {//length and beginpoint are variable
382 NumberOfSubchromoses = NumberOfSubchromoses + 2;
383 }
384 //1 extra subchromosome for the startposition, and one for the length
385 }
386
387 /***
388 *
389 * Calculations for the BEM (initial calculations)
390 *
391 **/
392
393 //step 1: Calculate Node coordinates
394 CalculateInput(uline, uL, uXN, uYN);
395
396 //step 2: Calculate the dimensions of uplaatsX and uplaatsY
397 int uNoU = totalNumberOfUnknown(uzone);
398 int uNoK = 2 * uline.GetLength(0) - uNoU; //for every equation not on the interface there

is one known
399
400 double[,] uA = new double[uNoU, uNoU];
401 double[,] uBt = new double[uNoU, uNoK];
402
403
404 Array.Resize(ref uplaatsX, uNoU);
405 Array.Resize(ref uplaatsY, uNoK);
406
407 //step 3: fill uplaatsX and uplaatsY
408 int numberOfCoastlines = 0;
409 for (int i = 0; i < ulineOnCoast.GetLength(0); i++)
410 {
411 if (ulineOnCoast[i] == true)
412 {
413 numberOfCoastlines++;
414 }
415 }
416
417 calculateUPlaatsX(ref uplaatsX, uzone, ulineOnCoast);
418 calculateUPlaatsY(ref uplaatsY, uzone, ulineOnCoast);
419
420 calculateAandBStart(ref uA, ref uBt, uplaatsX, uplaatsY, uK1, uzone, uline, uL, uXN, uYN, T

, ulineOnCoast);
421
422
423 int S = numberOfCoastalElements(ulineOnCoast);
424
425 Array.Resize(ref lineorder, S);
426 Array.Resize(ref cumulLineEnd, S);
427
428 calculateLineorderAndCumulLineEnd(uline, uL, ulineOnCoast, lineorder, cumulLineEnd);
429

83

7C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

430 //assign spw_min and spw_max
431 if (spw_min < 0)
432 {
433 spw_min = 0;
434 }
435 if (spw_max < 0)
436 {
437 if (fixed_spw_length == true)
438 {
439 spw_max = cumulLineEnd[cumulLineEnd.GetLength(0) - 1] - spw_length;
440 }
441 else
442 {
443 spw_max = cumulLineEnd[cumulLineEnd.GetLength(0) - 1];
444 }
445 }
446 if (spw_max >= 0)
447 {
448 if (spw_max <= spw_min)
449 {
450 MessageBox.Show("Sheet pile wall ends before it begins or has no length");
451 }
452 }
453
454 /***
455 *
456 * Calculations for the GA
457 *
458 **/
459 //set up the counters for the generations
460 int detailnumCalculationSaved = 0;
461 int detailnumCalculationSavedWell = 0;
462 int TimesTheSame;
463
464 //set up the arrays for the details of the different trials
465 double[][] detailMaxFitness = new double[numberofruns][];
466 double[][] detailMinFitness = new double[numberofruns][];
467 double[][] detailAveFitness = new double[numberofruns][];
468 int[][] detailCalculationSaved = new int[numberofruns][];
469 int[][] detailCalculationSavedWell = new int[numberofruns][];
470
471 //set the size of the jagged array
472
473 for (int i = 0; i < numberofruns; i++)
474 {
475 detailMaxFitness[i] = new double[numberOftrials];
476 detailMinFitness[i] = new double[numberOftrials];
477 detailAveFitness[i] = new double[numberOftrials];
478 detailCalculationSaved[i] = new int[numberOftrials];
479 detailCalculationSavedWell[i] = new int[numberOftrials];
480 }
481
482
483
484 //set up the arrays for the differnt trials
485 double[] trialMaxFitness = new double[numberOftrials];
486 double[][] trialWell = new double[numberOftrials * well.GetLength(0)][];
487 double[] trialConvergenceVelocity = new double[numberOftrials];
488 double[] trialTotalInflow = new double[numberOftrials];
489 double[] trialTotalNumberOflinesWithInflow = new double[numberOftrials];
490 double[] trials = new double[numberOftrials];
491 double[] triall = new double[numberOftrials];
492 int[] trialBestGenFound = new int[numberOftrials];
493
494 //set the dimension of the arrays in trialWell
495 for (int w = 0; w < trialWell.GetLength(0); w++)
496 {
497 trialWell[w] = new double[3]; //X,Y,Q
498 }
499
500 /***
501 *
502 * FOR EVERY TRIAL
503 *

84

8C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

504 **/
505
506 for (int trial = 0; trial < numberOftrials; trial++)
507 {
508 TimesTheSame = 0; //for every trial set to 0
509
510 progressBar1.Value = progressBar1.Minimum;
511
512 //variable that keeps track of the generation with highest fitnessfunction
513 int fittestGenerationFound = 0;
514 //set up the variables that are trial dependent
515
516 double[] fitness = new double[ps];
517 double elitefitness = 0;
518 int numberOfElites = 1;
519 string[][] elitechromosome = new string[numberOfElites][];
520
521 for (int i = 0; i < numberOfElites; i++)
522 {
523 elitechromosome[i] = new string[NumberOfSubchromoses];
524 }
525
526 double[] avefitness = new double[numberofruns]; //average fitness for every run
527 double[] maxfitness = new double[numberofruns]; //maximum fitness for every run
528 double[] onlinefitness = new double[numberofruns]; //average of all the maxima after x

runs
529 double[] offlinefitness = new double[numberofruns]; //average of all the maxima after x

 runs
530 double convergencevelocity = 0;
531
532 string[][] chromosomes = new string[ps][];
533 string[][] chromosomesTemp = new string[ps][];
534
535 //assign there dimension already = amount of substrings
536 for (int i = 0; i < ps; i++)
537 {
538 chromosomes[i] = new string[NumberOfSubchromoses];
539 chromosomesTemp[i] = new string[NumberOfSubchromoses];
540 }
541
542
543 //create all the arrays.
544
545 //first generate the chromosomes
546
547 /* B. Generate the first generation of chromosomes
548 * (SPW is a bool that tells if a chromosome should be created
549 * for the SPW
550 */
551
552 generatepopulation(chromosomes, chrLengthWell, chr1_LengthSpw, chr2_LengthSpw, hwell,

spw);
553
554
555
556 //calculate the double value of the chromosome
557 for (int i = 0; i < ps; i++)
558 { //thus for every population
559
560 //check if should be calculated or not
561 CheckIfNeedsToBeCalculated(ref CalculationsSaved, ref needsToBeCalculated, ref

calculatedFitnessTemp, chromosomes[i], CalculatedChromosomes, CalculatedFitness);
562
563 if (needsToBeCalculated == false)
564 {
565 fitness[i] = calculatedFitnessTemp;
566 detailnumCalculationSaved++;
567 detailnumCalculationSavedWell = detailnumCalculationSavedWell + well.GetLength

(0); //number of wells per chromosome, saved!
568 }
569 else
570 {//it needs to be calculated
571 //fill in the variables of the well
572 int countD = 0; //counts what variable we are accessing from dmin and dmax

85

9C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

573 for (int w = 0; w < well.GetLength(0); w++)
574 {
575 for (int j = 0; j < 3; j++)
576 {
577 if (hwell[w][j] == true)
578 {
579 well[w][j] = doubleChromosome(chromosomes[i][countD], dmin[countD],

 dmax[countD], chromosomes[i][countD].Length);
580 countD++;//go to the next variable
581 }
582 } //end for ever the loop X, Y, Q, zone
583 }//end for every subchromosome
584
585
586 //calculate the SPW (and the changes to line, K1, BV, ...
587 if (spw == true)
588 {//if a sheetpilewall is to be included, the input data needs to be

recalculated
589
590 //3. Calculated the beginning and the end of the SPW
591 beginSpw = 0;
592 endSpw = 0;
593 lineBegin = 0;
594 lineEnd = 0;
595
596 beginAndEndSPW(ref beginSpw, ref endSpw, ref lineBegin, ref lineEnd,

lineorder, cumulLineEnd, chromosomes, i, fixed_spw_length, spw_length);
597 if (endSpw > cumulLineEnd[cumulLineEnd.GetLength(0) - 1])
598 {
599 MessageBox.Show("length problem");
600 }
601 //4. Calculates the number of lines that are affected
602 int Na = numberOfLinesAffected(lineorder, lineBegin, lineEnd);
603
604 //5. Fill an array with the affected lines
605 int[] affectedLines = new int[Na];
606 fillAffectedLines(lineorder, cumulLineEnd, Na, affectedLines, lineBegin,

lineEnd);
607
608 //6. Calculate if extra equation because of begin of SPW
609 bool E1 = new bool();
610 E1 = extraLineForBeginSpw(cumulLineEnd, beginSpw, lineBegin, lineorder);
611
612 //7. Calculate if extra equation because of end of SPW
613 bool E2 = new bool();
614 E2 = extraLineForEndSpw(cumulLineEnd, endSpw, lineEnd, lineorder);
615
616 //8. Resize the arrays
617
618 int SizeArray = uline.GetLength(0);
619 if (E1 == true)
620 {
621 SizeArray++;
622 }
623 if (E2 == true)
624 {
625 SizeArray++;
626 }
627
628 //the exceptional case that beginSpw == endSpw (the SPW has than a lenght

of 0)
629 if (beginSpw == endSpw)
630 {
631 //in this case nothing should actually happen
632 SizeArray = uline.GetLength(0);
633 }
634
635 //Resize arrays
636
637 Array.Resize(ref line, SizeArray);
638 Array.Resize(ref XN, SizeArray);
639 Array.Resize(ref YN, SizeArray);
640 Array.Resize(ref zone, SizeArray);
641 Array.Resize(ref lineOnCoast, SizeArray);

86

10C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

642 Array.Resize(ref L, SizeArray);
643 Array.Resize(ref K1, SizeArray);
644 Array.Resize(ref BV, SizeArray);
645
646 //fill array again
647 fillArrayWithValues(affectedLines, E1, E2, beginSpw, endSpw, lineorder);
648
649 //the number of coastal lines has changed
650 numberOfCoastlines = numberOfCoastalElements(lineOnCoast);
651
652 }//end if CheckBox4.checked == true
653 else
654 {//if no SPW is to be included, the valuef of uXy should be copied to Xy
655
656 //arrays opzetten = give them the original size again
657 int SizeArray = uline.GetLength(0);
658 Array.Resize(ref line, SizeArray);
659 Array.Resize(ref XN, SizeArray);
660 Array.Resize(ref YN, SizeArray);
661 Array.Resize(ref zone, SizeArray);
662 Array.Resize(ref lineOnCoast, SizeArray);
663 Array.Resize(ref L, SizeArray);
664 Array.Resize(ref K1, SizeArray);
665 Array.Resize(ref BV, SizeArray);
666
667 for (int k = 0; k < uline.GetLength(0); k++)
668 {
669 line[k] = new double[4];
670 zone[k] = new int[2];
671
672 for (int j = 0; j < 4; j++)
673 {
674 Array.Copy(uline[k], j, line[k], j, 1);
675 }
676
677 Array.Copy(uXN, k, XN, k, 1);
678 Array.Copy(uYN, k, YN, k, 1);
679 Array.Copy(ulineOnCoast, k, lineOnCoast, k, 1);
680 Array.Copy(uL, k, L, k, 1);
681 Array.Copy(uK1, k, K1, k, 1);
682 Array.Copy(uBV, k, BV, k, 1);
683
684 for (int j = 0; j < 2; j++)
685 {
686 Array.Copy(uzone[k], j, zone[k], j, 1);
687 }
688 }//end for k
689 }//else copy values when no SPW is used
690
691 //calculate the zonenumber of each well
692 for (int w = 0; w < well.GetLength(0); w++)
693 {
694 CheckIfNeedsToBeCalculatedWell(w, ref CalculationsSavedWell, ref

needsToBeCalculatedWell, ref well, CalculatedWellZone, CalculatedWellPosition);
695 if (needsToBeCalculatedWell == true)
696 {
697 findOutZoneIntellegint(ref well, w);
698 fillCalculatedWellPosition(well, w, ref CalculatedWellPosition, ref

CalculatedWellZone);
699 }
700 else
701 {
702 detailnumCalculationSavedWell++;
703 }
704 }
705
706 //this should happen for every chromosome
707 int NoU = totalNumberOfUnknown(zone);
708 int NoK = 2 * line.GetLength(0) - NoU; //for every equation not on the

interface there is one known
709
710 resizeMultiDimensionalArray(ref A, NoU, NoU);
711 resizeMultiDimensionalArray(ref Bt, NoU, NoK);
712 Array.Resize(ref B, NoU);

87

11C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

713 Array.Resize(ref X, NoU);
714 Array.Resize(ref uplaatsY, NoK);
715 Array.Resize(ref uplaatsX, NoU);
716 Array.Resize(ref U, line.GetLength(0));
717 Array.Resize(ref Un, line.GetLength(0));
718
719 bool[,] Acal = new bool[NoU, NoU];
720 bool[,] Btcal = new bool[NoU, NoK];
721
722
723 AddToUPlaatsXandY(ref uplaatsX, ref uplaatsY, zone, lineOnCoast,

numberOfCoastlines);
724 CopyKnownValuesOfAandBt(uA, uBt, A, Bt);
725 calculateAandBt(uA, uBt, ref A, ref Bt, uplaatsX, uplaatsY, K1, zone, line, L,

XN, YN, T, lineOnCoast,Acal, Btcal);
726 //calculateAandBdirect2(A, B, Bt, plaatsB, plaatsX, K1, BV, zone, line, L, XN,

YN, T); //A ok, B Ok
727 calculateB(ref B, uplaatsY, Bt, BV);
728 wellinfluenceSmart(well, XN, YN, B, T, uplaatsX, zone);
729 //wellinfluence(well, XN, YN, B, T, plaatsX, zone); //needs to change as well!

730 solveInteliggent(A, B, X);
731 //reorder(BV, X, K1, U, Un, zone, plaatsX);
732 reorderSmart(BV, X, K1, U, Un, zone, uplaatsX);
733 calculatefitnessfunction(lineOnCoast, Un, fitness, i, chromosomes, dmin,

fitnessFunction, C1, C2, C3, C4);
734 //Store chromosomes so they do not need to be recalculated
735 fillCalculatedChromosomesAndInflowCharacteristics(fitness[i], chromosomes[i],

ref CalculatedFitness, ref CalculatedChromosomes, ref CalculatedTotalInflow, ref
CalculatedTotalInflowNodes, Un, zone, lineOnCoast, L, T);

736
737 }//end if needsToBeCalculated
738 }//end for every i (i = chromosome of the population)
739
740
741 progressBar1.PerformStep();
742
743 //detailed arrays
744 detailMaxFitness[0][trial] = fitness.Max();
745 detailMinFitness[0][trial] = fitness.Min();
746 detailAveFitness[0][trial] = fitness.Average();
747 detailCalculationSaved[0][trial] = detailnumCalculationSaved;
748 detailCalculationSavedWell[0][trial] = detailnumCalculationSavedWell;
749
750 //set back to 0
751 detailnumCalculationSaved = 0;
752 detailnumCalculationSavedWell = 0;
753
754 //calculate average and maximum of the fitness
755 avefitness[0] = fitness.Average();
756 maxfitness[0] = fitness.Max();
757 offlinefitness[0] = maxfitness[0];
758 onlinefitness[0] = avefitness[0];
759
760 //write the elite fitness
761 elitefitness = fitness.Max();
762 int IMax = Array.IndexOf(fitness, fitness.Max());
763
764 //in any case it should be stored in the elitechromosome, it is the first run. Whatever

 chromosome will thus be the best so far
765 for (int el = 0; el < numberOfElites; el++)
766 {
767 for (int j = 0; j < NumberOfSubchromoses; j++)
768 {
769 elitechromosome[el][j] = String.Copy(chromosomes[IMax][j]);
770 }
771 }
772
773 //do for every generation (run =0 is the random generated chromosomes set
774 for (int run = 1; run < numberofruns; run++)
775 {
776
777 //write the population to a temp string[]
778

88

12C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

779 for (int i = 0; i < chromosomes.GetLength(0); i++)
780 {
781 for (int j = 0; j < chromosomes[i].GetLength(0); j++)
782 {
783 chromosomesTemp[i][j] = String.Copy(chromosomes[i][j]);
784 }
785 }
786
787
788 // select according the roulettewheel a chromosome
789 // Then cross them over
790 int NumberOfCrossOverCouples = (int)(Math.Floor((double)ps / 2)) * 2;
791
792 //Pc is constant during one run
793 double pc = Pc(run, ps, pc_begin, pc_eind);
794
795 //in the case of Roulettewheel selection
796 if (selectionType == 0)
797 {
798 for (int i = 0; i < NumberOfCrossOverCouples; i = i + 2)
799 {
800 int intChr1 = SelectByRoulettewheel(fitness);
801 int intChr2 = SelectByRoulettewheel(fitness);
802 for (int j = 0; j < chromosomesTemp[i].GetLength(0); j++)
803 {
804
805 chromosomes[i][j] = String.Copy(chromosomesTemp[intChr1][j]);
806 chromosomes[i + 1][j] = String.Copy(chromosomesTemp[intChr2][j]);
807 }
808 if (intChr1 != intChr2)
809 {//if they are the same, no new chromosome can be created by crossover.
810 crossover(chromosomes, i, pc);
811 }
812 }
813
814 if (ps % 2 != 0)
815 {
816 int intChr = SelectByRoulettewheel(fitness);
817 for (int j = 0; j < chromosomesTemp[ps - 1].GetLength(0); j++)
818 {
819 chromosomes[ps - 1][j] = String.Copy(chromosomesTemp[intChr][j]);
820 }
821 }
822 }//end if roulette wheel is the selectionoperator
823
824
825 if (selectionType == 1)
826 {
827 //Ranking
828
829 //1. How many of the population size will continue to the next generation

anyway?
830 int IntThatContinue = selectionConstant;
831
832 //2. Create and array that holds the fitness and the index
833 double[][] SortFitness = new double[fitness.GetLength(0)][];
834 for (int i = 0; i < fitness.GetLength(0); i++)
835 {
836 SortFitness[i] = new double[2];
837 double fit = fitness[i];
838 SortFitness[i][0] = fit;
839 SortFitness[i][1] = i;
840 }
841
842 //3. Sort the array, based upon its fitness...
843 IComparer myComparer = new ArrayComparer();
844 Array.Sort(SortFitness, myComparer);
845
846 //4. Fill the array with the chromosomes that continue anyway
847 for (int i = 0; i < IntThatContinue; i++)
848 {
849 int IndexChromosomeToCopy = (int)SortFitness[i][1];
850 for (int j = 0; j < chromosomes[0].GetLength(0); j++)
851 {

89

13C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

852 Array.Copy(chromosomesTemp[IndexChromosomeToCopy], j, chromosomes[i], j
, 1);

853 }
854 }//end for all chromosomes that go to the next generation anyway
855
856 //5. Fill the other free spaces with fresh chromosomes.
857
858 for (int c = IntThatContinue; c < chromosomes.GetLength(0); c++)
859 {
860 int countSubChromosome = 0;
861 for (int i = 0; i < hwell.GetLength(0); i++)
862 {
863 for (int w = 0; w < 3; w++)
864 {
865 if (hwell[i][w] == true)
866 {
867 chromosomes[c][countSubChromosome] = "";
868 for (int j = 0; j < chrLengthWell[i]; j++)
869 {
870 int R = Random.Next(0, 2);
871 chromosomes[c][countSubChromosome] = chromosomes[c]

[countSubChromosome] + R;
872 }
873 countSubChromosome++;//sub chromosome was made, so to the next

one now
874 }
875 }
876 }
877
878 //for the sheet pile wall: chr1
879 if (spw == true)
880 {
881 if (chr1_LengthSpw != 0)
882 {
883 chromosomes[c][countSubChromosome] = "";
884 for (int j = 0; j < chr1_LengthSpw; j++)
885 {
886 int R = Random.Next(0, 2);
887 chromosomes[c][countSubChromosome] = chromosomes[c]

[countSubChromosome] + R;
888 }
889 countSubChromosome++;
890 }
891
892 if (chr2_LengthSpw != 0)
893 {
894 chromosomes[c][countSubChromosome] = "";
895 for (int j = 0; j < chr2_LengthSpw; j++)
896 {
897 int R = Random.Next(0, 2);
898 chromosomes[c][countSubChromosome] = chromosomes[c]

[countSubChromosome] + R;
899 }
900 countSubChromosome++;
901 }
902 }//end if spw == true
903 }//end for c
904
905 //6. Crossing over
906 for (int i = 0; i < NumberOfCrossOverCouples; i = i + 2)
907 {
908 crossover(chromosomes, i, pc);
909 }
910
911 //if uneven the last chromosome will not be crossed over.
912
913 }//end Ranking
914
915 if (selectionType == 2)
916 {
917 int KK = selectionConstant;
918
919 for (int i = 0; i < NumberOfCrossOverCouples; i = i + 2)
920 {

90

14C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

921 int intChr1 = SelectByConstantSelection(fitness, KK);
922 int intChr2 = SelectByConstantSelection(fitness, KK);
923 for (int j = 0; j < chromosomesTemp[i].GetLength(0); j++)
924 {
925
926 chromosomes[i][j] = String.Copy(chromosomesTemp[intChr1][j]);
927 chromosomes[i + 1][j] = String.Copy(chromosomesTemp[intChr2][j]);
928 }
929
930 if (intChr1 != intChr2)
931 {//if they are the same, crossover cannot create a new chromosome
932 crossover(chromosomes, i, pc);
933 }
934 }
935
936 if (ps % 2 != 0)
937 {
938 int intChr = SelectByConstantSelection(fitness, KK);
939 for (int j = 0; j < chromosomesTemp[ps - 1].GetLength(0); j++)
940 {
941 chromosomes[ps - 1][j] = String.Copy(chromosomesTemp[intChr][j]);
942 }
943 }
944
945 }
946
947 if (interchange == true)
948 {
949 //now mutate them
950 if (run % 2 == 0)
951 {
952 double pm = Pm(run, ps, pm_begin, pm_eind);
953 for (int i = 0; i < ps; i++)
954 {
955 mutation(chromosomes, i, pm);
956 }
957 }
958 else
959 {
960 //and now flip them
961 double pf = Pm(run, ps, pm_begin, pm_eind);
962 for (int i = 0; i < ps; i++)
963 {
964 flip(chromosomes, i, pf);
965 }
966 }
967 }
968 else
969 {
970 //mutate
971 double pm = Pm(run, ps, pm_begin, pm_eind);
972 for (int i = 0; i < ps; i++)
973 {
974 mutation(chromosomes, i, pm);
975 }
976
977 //flip
978 double pf = Pm(run, ps, pm_begin, pm_eind);
979 for (int i = 0; i < ps; i++)
980 {
981 flip(chromosomes, i, pf);
982 }
983 }
984
985 //add the best one again!
986 if (elitism == true)
987 {
988 double maximumValue = fitness.Max();
989 int whereIsMaximum = Array.LastIndexOf(fitness, maximumValue);
990 for (int i = 0; i < chromosomes[0].GetLength(0); i++)
991 {
992 chromosomes[0][i] = String.Copy(chromosomesTemp[whereIsMaximum][i]);
993 }
994 }

91

15C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

995
996 if (refreshByForcedFlip == true && (selectionType == 0 || selectionType == 2))
997 {
998 /* This function forces the best solution of the previous run to mutate,
999 * the place where mutation takes place is selected with equal probability)

1000 */
1001
1002 if (TimesTheSame >= maxTimesTheSame)
1003 {
1004 // maximum value of last run
1005 double maximumValue = fitness.Max();
1006 int whereIsMaximum = Array.LastIndexOf(fitness, maximumValue);
1007
1008 for (int c = ps - numberToRefresh; c < ps; c++)
1009 {
1010 // Select subchromosome that will be mutate by chance
1011 int R1 = Random.Next(0, chromosomes[0].GetLength(0));
1012 // The length of the subchromosome
1013 int length = chromosomes[0][R1].Length;
1014 // the gene that will be mutated
1015 int R2 = Random.Next(0, length-1);
1016
1017
1018 //taking the sub chromosome that was selected
1019 string subChrTemp = String.Copy(chromosomesTemp[whereIsMaximum][R1]);
1020 //split in parts
1021 string subChrB = subChrTemp.Substring(0, R2); //begin
1022 string subChrM1 = subChrTemp.Substring(R2, 1); //to be flipped
1023 string subChrM2 = subChrTemp.Substring(R2+1, 1); //to be flipped
1024 string subChrE = subChrTemp.Substring(R2+2, (length - R2 - 2)); //end
1025
1026 //past back together
1027 subChrTemp = subChrB + subChrM2 + subChrM1 + subChrE;
1028
1029 //store
1030 for (int i = 0; i < chromosomes[0].GetLength(0); i++)
1031 {
1032 if (i != R1)
1033 {
1034 chromosomes[c][i] = String.Copy(chromosomesTemp[whereIsMaximum]

[i]);
1035 }
1036 else
1037 {
1038 chromosomes[c][i] = String.Copy(subChrTemp);
1039 }
1040 }
1041 }//end for c
1042 }//end if should be refreshed
1043 }//end refresh
1044
1045 if (refreshByForcedMutation == true && (selectionType == 0 || selectionType == 2))
1046 {
1047 /* This function forces the best solution of the previous run to mutate,
1048 * the place where mutation takes place is selected with equal probability)
1049 */
1050
1051 if (TimesTheSame >= maxTimesTheSame)
1052 {
1053 // maximum value of last run
1054 double maximumValue = fitness.Max();
1055 int whereIsMaximum = Array.LastIndexOf(fitness, maximumValue);
1056
1057 for (int c = ps - numberToRefresh; c < ps; c++)
1058 {
1059 // Select subchromosome that will be mutate by chance
1060 int R1 = Random.Next(0, chromosomes[0].GetLength(0));
1061 // The length of the subchromosome
1062 int length = chromosomes[0][R1].Length;
1063 // the gene that will be mutated
1064 int R2 = Random.Next(0, length);
1065
1066 //taking the sub chromosome that was selected
1067 string subChrTemp = String.Copy(chromosomesTemp[whereIsMaximum][R1]);

92

16C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

1068 //split in parts
1069 string subChrB = subChrTemp.Substring(0, R2); //begin
1070 string subChrM = subChrTemp.Substring(R2, 1); //to be mutated
1071 string subChrE = subChrTemp.Substring(R2 + 1, (length - R2 - 1)); //end
1072 //mutate
1073 if (subChrM == "1")
1074 {
1075 subChrM = "0";
1076 }
1077 else
1078 {
1079 subChrM = "1";
1080 }
1081 //past back together
1082 subChrTemp = subChrB + subChrM + subChrE;
1083
1084 //store
1085 for (int i = 0; i < chromosomes[0].GetLength(0); i++)
1086 {
1087 if (i != R1)
1088 {
1089 chromosomes[c][i] = String.Copy(chromosomesTemp[whereIsMaximum]

[i]);
1090 }
1091 else
1092 {
1093 chromosomes[c][i] = String.Copy(subChrTemp);
1094 }
1095 }
1096 }
1097 }//end if should be refreshed
1098 }//end refresh
1099
1100 if (refresh == true && (selectionType == 0 || selectionType == 2))
1101 {
1102 if (TimesTheSame >= maxTimesTheSame)
1103 {
1104 for (int c = ps - numberToRefresh; c < ps; c++)
1105 {
1106 int countSubChromosome = 0;
1107 for (int i = 0; i < hwell.GetLength(0); i++)
1108 {
1109 for (int w = 0; w < 3; w++)
1110 {
1111 if (hwell[i][w] == true)
1112 {
1113 chromosomes[c][countSubChromosome] = "";
1114 for (int j = 0; j < chrLengthWell[i]; j++)
1115 {
1116 int R = Random.Next(0, 2);
1117 chromosomes[c][countSubChromosome] = chromosomes[c]

[countSubChromosome] + R;
1118 }
1119 countSubChromosome++;//sub chromosome was made, so to

the next one now
1120 }
1121 }
1122 }
1123
1124 //for the sheet pile wall: chr1
1125 if (spw == true)
1126 {
1127 if (chr1_LengthSpw != 0)
1128 {
1129 chromosomes[c][countSubChromosome] = "";
1130 for (int j = 0; j < chr1_LengthSpw; j++)
1131 {
1132 int R = Random.Next(0, 2);
1133 chromosomes[c][countSubChromosome] = chromosomes[c]

[countSubChromosome] + R;
1134 }
1135 countSubChromosome++;
1136 }
1137

93

17C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

1138 if (chr2_LengthSpw != 0)
1139 {
1140 chromosomes[c][countSubChromosome] = "";
1141 for (int j = 0; j < chr2_LengthSpw; j++)
1142 {
1143 int R = Random.Next(0, 2);
1144 chromosomes[c][countSubChromosome] = chromosomes[c]

[countSubChromosome] + R;
1145 }
1146 countSubChromosome++;
1147 }
1148 }//end if spw == true
1149 }
1150 }//end if should be refreshed
1151 }//end refresh
1152
1153 //calculate the new values of the unknown again
1154
1155 for (int i = 0; i < ps; i++)
1156 {
1157 //check if should be calculated or not
1158 CheckIfNeedsToBeCalculated(ref CalculationsSaved, ref needsToBeCalculated, ref

calculatedFitnessTemp, chromosomes[i], CalculatedChromosomes, CalculatedFitness);
1159
1160 if (needsToBeCalculated == false)
1161 {
1162 fitness[i] = calculatedFitnessTemp;
1163 detailnumCalculationSaved++;
1164 detailnumCalculationSavedWell = detailnumCalculationSavedWell + well.

GetLength(0); //number of wells per chromosome, saved!
1165 }
1166 else
1167 {//it needs to be calculated
1168 int countD = 0; //counts what variable we are accessing from dmin and dmax
1169 for (int w = 0; w < well.GetLength(0); w++)
1170 {
1171 for (int j = 0; j < 3; j++)
1172 {
1173 if (hwell[w][j] == true)
1174 {
1175 well[w][j] = doubleChromosome(chromosomes[i][countD], dmin

[countD], dmax[countD], chromosomes[i][countD].Length);
1176 countD++;//go to the next variable
1177 }
1178 } //end for ever the loop X, Y, Q, zone
1179 }//end for every subchromosome
1180
1181
1182
1183 //calculate the SPW (and the changes to line, K1, BV, ...
1184 if (spw == true)
1185 {//if a sheetpilewall is to be included, the input data needs to be

recalculated
1186
1187 //3. Calculated the beginning and the end of the SPW
1188 beginSpw = 0;
1189 endSpw = 0;
1190 lineBegin = 0;
1191 lineEnd = 0;
1192
1193 beginAndEndSPW(ref beginSpw, ref endSpw, ref lineBegin, ref lineEnd,

lineorder, cumulLineEnd, chromosomes, i, fixed_spw_length, spw_length);
1194 if (endSpw > cumulLineEnd[cumulLineEnd.GetLength(0) - 1])
1195 {
1196 MessageBox.Show("length problem");
1197 }
1198 //4. Calculates the number of lines that are affected
1199 int Na = numberOfLinesAffected(lineorder, lineBegin, lineEnd);
1200
1201 //5. Fill an array with the affected lines
1202 int[] affectedLines = new int[Na];
1203 fillAffectedLines(lineorder, cumulLineEnd, Na, affectedLines, lineBegin

, lineEnd);
1204

94

18C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

1205 //6. Calculate if extra equation because of begin of SPW
1206 bool E1 = new bool();
1207 E1 = extraLineForBeginSpw(cumulLineEnd, beginSpw, lineBegin, lineorder)

;
1208
1209 //7. Calculate if extra equation because of end of SPW
1210 bool E2 = new bool();
1211 E2 = extraLineForEndSpw(cumulLineEnd, endSpw, lineEnd, lineorder);
1212
1213 //8. Resize the arrays
1214
1215 int SizeArray = uline.GetLength(0);
1216 if (E1 == true)
1217 {
1218 SizeArray++;
1219 }
1220 if (E2 == true)
1221 {
1222 SizeArray++;
1223 }
1224
1225 //the exceptional case that beginSpw == endSpw
1226 if (beginSpw == endSpw)
1227 {
1228 //in this case nothing should actually happen
1229 SizeArray = uline.GetLength(0);
1230 }
1231
1232 //Resize arrays
1233
1234 Array.Resize(ref line, SizeArray);
1235 Array.Resize(ref XN, SizeArray);
1236 Array.Resize(ref YN, SizeArray);
1237 Array.Resize(ref zone, SizeArray);
1238 Array.Resize(ref lineOnCoast, SizeArray);
1239 Array.Resize(ref L, SizeArray);
1240 Array.Resize(ref K1, SizeArray);
1241 Array.Resize(ref BV, SizeArray);
1242
1243 //fill array again
1244 fillArrayWithValues(affectedLines, E1, E2, beginSpw, endSpw, lineorder)

;
1245
1246 //the number of coastal lines has changed
1247 numberOfCoastlines = numberOfCoastalElements(lineOnCoast);
1248 }//end if CheckBox4.checked == true
1249 else
1250 {//if no SPW is to be included, the valuef of uXy should be copied to Xy
1251
1252 for (int k = 0; k < uline.GetLength(0); k++)
1253 {
1254 line[k] = new double[4];
1255 zone[k] = new int[2];
1256
1257 for (int j = 0; j < 4; j++)
1258 {
1259 Array.Copy(uline[k], j, line[k], j, 1);
1260 }
1261
1262 Array.Copy(uXN, k, XN, k, 1);
1263 Array.Copy(uYN, k, YN, k, 1);
1264 Array.Copy(ulineOnCoast, k, lineOnCoast, k, 1);
1265 Array.Copy(uL, k, L, k, 1);
1266 Array.Copy(uK1, k, K1, k, 1);
1267 Array.Copy(uBV, k, BV, k, 1);
1268
1269 for (int j = 0; j < 2; j++)
1270 {
1271 Array.Copy(uzone[k], j, zone[k], j, 1);
1272 }
1273 }//end for k
1274 }//else copy values when no SPW is used
1275
1276

95

19C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

1277
1278
1279
1280
1281
1282 //calculate the zonenumber of each well
1283 for (int w = 0; w < well.GetLength(0); w++)
1284 {
1285 CheckIfNeedsToBeCalculatedWell(w, ref CalculationsSavedWell, ref

needsToBeCalculatedWell, ref well, CalculatedWellZone, CalculatedWellPosition);
1286 if (needsToBeCalculatedWell == true)
1287 {
1288 findOutZoneIntellegint(ref well, w);
1289 fillCalculatedWellPosition(well, w, ref CalculatedWellPosition, ref

 CalculatedWellZone);
1290 }
1291 else
1292 {
1293 detailnumCalculationSavedWell++;
1294 }
1295 }
1296
1297
1298 //this should happen for every chromosome
1299 int NoU = totalNumberOfUnknown(zone);
1300 int NoK = 2 * line.GetLength(0) - NoU; //for every equation not on the

interface there is one known
1301
1302
1303 //A and B matrix (square matrix, with dimension of G and H = dimension XM)
1304 resizeMultiDimensionalArray(ref A, NoU, NoU);
1305 resizeMultiDimensionalArray(ref Bt, NoU, NoK);
1306 Array.Resize(ref B, NoU);
1307 Array.Resize(ref X, NoU);
1308 Array.Resize(ref uplaatsY, NoK);
1309 Array.Resize(ref uplaatsX, NoU);
1310 Array.Resize(ref U, line.GetLength(0));
1311 Array.Resize(ref Un, line.GetLength(0));
1312
1313 bool[,] Acal = new bool[NoU, NoU];
1314 bool[,] Btcal = new bool[NoU, NoK];
1315
1316 //calculatePlaatsB(plaatsB, zone);
1317 //calculatePlaatsX(plaatsX, zone);
1318 AddToUPlaatsXandY(ref uplaatsX, ref uplaatsY, zone, lineOnCoast,

numberOfCoastlines);
1319 CopyKnownValuesOfAandBt(uA, uBt, A, Bt);
1320 calculateAandBt(uA, uBt, ref A, ref Bt, uplaatsX, uplaatsY, K1, zone, line,

 L, XN, YN, T, lineOnCoast, Acal, Btcal);
1321 //calculateAandBdirect2(A, B, Bt, plaatsB, plaatsX, K1, BV, zone, line, L,

XN, YN, T); //A ok, B Ok
1322 calculateB(ref B, uplaatsY, Bt, BV);
1323 wellinfluenceSmart(well, XN, YN, B, T, uplaatsX, zone);
1324 //wellinfluence(well, XN, YN, B, T, plaatsX, zone); //needs to change as

well!
1325 solveInteliggent(A, B, X);
1326 //reorder(BV, X, K1, U, Un, zone, plaatsX);
1327 reorderSmart(BV, X, K1, U, Un, zone, uplaatsX);
1328 calculatefitnessfunction(lineOnCoast, Un, fitness, i, chromosomes, dmin,

fitnessFunction, C1, C2, C3, C4);
1329 //Store chromosomes so they do not need to be recalculated
1330 fillCalculatedChromosomesAndInflowCharacteristics(fitness[i], chromosomes

[i], ref CalculatedFitness, ref CalculatedChromosomes, ref CalculatedTotalInflow, ref
CalculatedTotalInflowNodes, Un, zone, lineOnCoast, L, T);

1331 }//end if needs to be recalculated
1332 }
1333
1334
1335
1336
1337 //store details
1338 detailMaxFitness[run][trial] = fitness.Max();
1339 detailMinFitness[run][trial] = fitness.Min();
1340 detailAveFitness[run][trial] = fitness.Average();

96

20C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

1341 detailCalculationSaved[run][trial] = detailnumCalculationSaved;
1342 detailCalculationSavedWell[run][trial] = detailnumCalculationSavedWell;
1343
1344 //check if the fitness found is higher
1345 if (detailMaxFitness[run][trial] == detailMaxFitness[run-1][trial])
1346 {
1347 TimesTheSame++;
1348 }
1349 else
1350 {
1351 TimesTheSame = 0;
1352 }
1353
1354 //reset detailnumCalculationSaved and detailnumCalculationSavedWell
1355 detailnumCalculationSaved = 0;
1356 detailnumCalculationSavedWell = 0;
1357
1358 //calculate maximum and average fitness of this generation
1359 avefitness[run] = fitness.Average();
1360 maxfitness[run] = fitness.Max();
1361 if (maxfitness[run] < maxfitness[run - 1])
1362 {
1363 MessageBox.Show("Maxima werd niet overgenomen!");
1364 }
1365 else if (maxfitness[run] > maxfitness[run - 1])
1366 {
1367 elitefitness = fitness.Max();
1368 IMax = Array.IndexOf(fitness, fitness.Max());
1369
1370 for (int el = 0; el < numberOfElites; el++)
1371 {
1372 for (int j = 0; j < NumberOfSubchromoses; j++)
1373 {
1374 Array.Copy(chromosomes[IMax], j, elitechromosome[el], j, 1);
1375 }
1376 }
1377
1378 //in this generation the best was found
1379 fittestGenerationFound = run;
1380 }
1381
1382
1383 //calculate f_off and f_on
1384 calculateOfflinePerformance(offlinefitness, run, maxfitness);
1385 calculateOnlinePerformance(onlinefitness, run, avefitness);
1386
1387 //print offlinefitness and onlinefitness
1388 //printOfflinePerformance(offlinefitness);
1389 //printOnlinePerformance(onlinefitness);
1390 //printavefitness(avefitness);
1391 //printmaxfitness(maxfitness);
1392 progressBar1.PerformStep();
1393 }//end run
1394
1395
1396 convergencevelocity = calculateConvergenceVelocity(maxfitness);
1397 double startOfSheetpilewall = 0;
1398 double lengthOfSheetpilewall = 0;
1399 double[] dWhereIsMax = new double[dmin.GetLength(0)]; //to store the double values
1400
1401 //calculate the place where the maximum fitness occured
1402 if (elitism == false)
1403 {
1404 int IndexOfMaximum = Array.IndexOf(fitness, fitness.Max());
1405
1406 for (int d = 0; d < dmin.GetLength(0); d++)
1407 {
1408 dWhereIsMax[d] = doubleChromosome(chromosomes[IndexOfMaximum][d], dmin[d], dmax

[d], chromosomes[IndexOfMaximum][d].Length);
1409 }
1410 if (fixed_spw_length == true)
1411 {
1412 startOfSheetpilewall = doubleChromosome(chromosomes[0][chromosomes[0].GetLength

(0) - 1], spw_min, spw_max, chromosomes[0][chromosomes[0].GetLength(0) - 1].Length);

97

21C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

1413 lengthOfSheetpilewall = spw_length;
1414 }
1415 else
1416 {
1417 startOfSheetpilewall = doubleChromosome(chromosomes[0][chromosomes[0].GetLength

(0) - 2], spw_min, spw_max, chromosomes[0][chromosomes[0].GetLength(0) - 2].Length);
1418 lengthOfSheetpilewall = (doubleChromosome(chromosomes[0][chromosomes[0].

GetLength(0) - 1], 0, 1, chromosomes[0][chromosomes[0].GetLength(0) - 1].Length)) * (spw_max -
startOfSheetpilewall);

1419 }
1420
1421 }//end if checkbox3 was not checked.
1422 else
1423 { //the checkbox was checked
1424 for (int d = 0; d < dmin.GetLength(0); d++)
1425 {
1426 dWhereIsMax[d] = doubleChromosome(elitechromosome[0][d], dmin[d], dmax[d],

elitechromosome[0][d].Length);
1427 }
1428
1429 if (spw == true)
1430 {
1431 if (fixed_spw_length == true)
1432 {
1433 startOfSheetpilewall = doubleChromosome(elitechromosome[0][elitechromosome

[0].GetLength(0) - 1], spw_min, spw_max, elitechromosome[0][elitechromosome[0].GetLength(0) - 1].
Length);

1434 lengthOfSheetpilewall = spw_length;
1435 }
1436 else
1437 {
1438 startOfSheetpilewall = doubleChromosome(elitechromosome[0][elitechromosome

[0].GetLength(0) - 2], spw_min, spw_max, elitechromosome[0][elitechromosome[0].GetLength(0) - 2].
Length);

1439 lengthOfSheetpilewall = (doubleChromosome(elitechromosome[0]
[elitechromosome[0].GetLength(0) - 1], 0, 1, elitechromosome[0][elitechromosome[0].GetLength(0) -
1].Length)) * (spw_max - startOfSheetpilewall);

1440 }
1441 }
1442 }//end else: the checkbox was checked
1443
1444 //fill the trial for the inflow caracteristics
1445
1446 /* for the maximum fitness of the last run and the identical chromosomes copy
1447 * find the index in the CalculatedTotalInflow and store the values in
1448 * trialTotalInflow and trialTotalNumberOflinesWithInflow
1449 */
1450
1451 for (int j = 0; j < CalculatedFitness.GetLength(0); j++)
1452 {//j is the counter representing the CalculatedFitness
1453
1454 if (fitness.Max() == CalculatedFitness[j])
1455 {
1456 //multiple chromosomes might have the same fitness so it should be checked if

their subchromosomes are identical
1457 int numOk = 0;
1458 for (int s = 0; s < CalculatedChromosomes[j].GetLength(0); s++)
1459 {
1460 if (chromosomes[Array.IndexOf(fitness, fitness.Max())][s] ==

CalculatedChromosomes[j][s])
1461 {
1462 numOk++;
1463 }
1464 }//end for s
1465
1466 if (numOk == CalculatedChromosomes[j].GetLength(0))
1467 {//this is the index that we are looking for
1468 trialTotalInflow[trial] = CalculatedTotalInflow[j];
1469 trialTotalNumberOflinesWithInflow[trial] = CalculatedTotalInflowNodes[j];
1470 j = CalculatedFitness.GetLength(0);
1471 }
1472 }//end if (fitness[i] == Calculatedfitness[j])
1473 }//end for each chromosome in the store matrices
1474

98

22C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

1475 //fill the trial arrays.
1476 trialMaxFitness[trial] = fitness.Max();
1477 trialConvergenceVelocity[trial] = convergencevelocity;
1478 trials[trial] = startOfSheetpilewall;
1479 triall[trial] = lengthOfSheetpilewall;
1480 trialBestGenFound[trial] = fittestGenerationFound;
1481
1482 int dd = 0;
1483
1484 for (int i = 0; i < well.GetLength(0); i++)
1485 {
1486 for (int j = 0; j < 3; j++)
1487 {
1488 if (hwell[i][j] == false)
1489 {
1490 trialWell[trial * well.GetLength(0) + i][j] = well[i][j];
1491 }
1492 else
1493 {
1494 trialWell[trial * well.GetLength(0) + i][j] = dWhereIsMax[dd];
1495 dd++;
1496 }
1497 }
1498 } //end filling well
1499 progressBar2.PerformStep();
1500 }//end of all trial
1501
1502 //write the report showint the results and the best found
1503 trialreportxls(ps, numberofruns, pc_begin, pc_eind, pm_begin, pm_eind, trialMaxFitness,

trialWell, trialConvergenceVelocity, trialTotalInflow, trialTotalNumberOflinesWithInflow,
trialBestGenFound, trials, triall, CalculationsSaved, NumberOfSubchromoses, CalculationsSavedWell,
CalculatedFitness.GetLength(0), CalculatedWellZone.GetLength(0),detailMaxFitness, detailMinFitness,
 detailAveFitness, detailCalculationSaved, detailCalculationSavedWell, C1, C2, C3, C4,
fixed_spw_length, spw_length);

1504 MessageBox.Show("Trials completed");
1505
1506 }//end Run_Load
1507
1508 //Other functions
1509
1510 public void CalculateInput(double[][] uline, double[] uL, double[] uXN, double[] uYN)
1511 {
1512 /* line[i][0] = x coordinate of the left endpoint of line i
1513 * line[i][1] = y coordinate of the left endpoint of line i
1514 * line[i][2] = x coordinate of the right endpoint of line i
1515 * line[i][3] = y coordinate of the right endpoint of line i
1516 */
1517
1518 for (int i = 0; i < uline.GetLength(0); i++)
1519 {
1520 uL[i] = Math.Sqrt(Math.Pow((uline[i][2] - uline[i][0]), 2) + Math.Pow((uline[i][3] -

uline[i][1]), 2));
1521 uXN[i] = (uline[i][0] + uline[i][2]) / 2;
1522 uYN[i] = (uline[i][1] + uline[i][3]) / 2;
1523 }
1524 }//end CalculateInput
1525
1526 public void calculateUPlaatsX(ref int[] plaatsuX, int[][] uzone, bool[] ulineOnCoast)
1527 {
1528 int i = 0;
1529
1530 //for all the nodes not on the interface
1531 for (int I = 0; I < uzone.GetLength(0); I++)
1532 {
1533 if (ulineOnCoast[I] == false)
1534 {
1535 uplaatsX[i] = I; //nodes have to be numbers from one to N, and always increased by

1.
1536 i++;
1537 if (uzone[I][1] != -1)
1538 {
1539 uplaatsX[i] = I;
1540 i++;
1541 }

99

23C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

1542 }
1543 }
1544 //second write all the nodes that are on the coastline
1545 for (int I = 0; I < uzone.GetLength(0); I++)
1546 {
1547 if (ulineOnCoast[I] == true)
1548 {
1549 uplaatsX[i] = I;
1550 i++;
1551 }
1552 }
1553 }//end calculateUPlaatsX
1554
1555 public void calculateUPlaatsY(ref int[] plaatsuY, int[][] uzone, bool[] ulineOnCoast)
1556 {
1557 int i = 0;
1558
1559 //for all the nodes not on the coastline and interface
1560 for (int I = 0; I < uzone.GetLength(0); I++)
1561 {
1562 if (ulineOnCoast[I] == false)
1563 {
1564 if (uzone[I][1] == -1)
1565 {
1566 uplaatsY[i] = I;
1567 i++;
1568 }
1569 }
1570 }
1571 //second write all the nodes that are on the coastline
1572 for (int I = 0; I < uzone.GetLength(0); I++)
1573 {
1574 if (ulineOnCoast[I] == true)
1575 {
1576 uplaatsY[i] = I;
1577 i++;
1578 }
1579 }
1580 }//end calculateUPlaatsY
1581
1582 public void calculateAandBStart(ref double[,] uA, ref double[,] uBt, int[] uplaatsX, int[]

uplaatsY, int[] uK, int[][] uzone, double[][] uline, double[] uL, double[] uXN, double[] uYN,
double[] T, bool[] ulineOnCoast)

1583 {
1584 for (int I = 0; I < uzone.GetLength(0); I++)
1585 {
1586 int rij = Array.IndexOf(uplaatsX, I);
1587
1588 //write first equation: for node on interface or not, it is the same
1589 for (int J = 0; J < uzone.GetLength(0); J++)
1590 {
1591 if (uzone[J][0] == uzone[I][0] || uzone[J][1] == uzone[I][0])
1592 {
1593 //when J is on the interface
1594 if (uzone[J][1] != -1)
1595 {
1596 //is J defined in same zone as I (otherwise problem with L and g*(-To/T1)
1597 if (uzone[J][0] == uzone[I][0])
1598 { //they are defined in the same zone: no problem
1599 if (I == J)
1600 {
1601 uA[rij, Array.IndexOf(uplaatsX, J)] = -0.5; // = h
1602 uA[rij, Array.LastIndexOf(uplaatsX, J)] = -uL[J] / (2 * Math.PI) *

(Math.Log(uL[J] / 2) - 1); // =-g
1603 }
1604 else
1605 {
1606 uA[rij, Array.IndexOf(uplaatsX, J)] = Hon(uXN[I], uline[J][0],

uline[J][2], uYN[I], uline[J][1], uline[J][3]); // = h
1607 uA[rij, Array.LastIndexOf(uplaatsX, J)] = -Gon(uXN[I], uline[J][0],

 uline[J][2], uYN[I], uline[J][1], uline[J][3], uL[J]); // =-g
1608 }
1609 }
1610 else

100

24C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

1611 { //they are not defined in the same zone: pay attention!
1612 if (I == J)
1613 {
1614 uA[rij, Array.IndexOf(uplaatsX, J)] = -0.5;// =h
1615 uA[rij, Array.LastIndexOf(uplaatsX, J)] = -uL[J] / (2 * Math.PI) *

(Math.Log(uL[J] / 2) - 1) * (-T[uzone[J][0]] / T[uzone[J][1]]);//-g
1616 }
1617 else
1618 {
1619 uA[rij, Array.IndexOf(uplaatsX, J)] = Hon(uXN[I], uline[J][2],

uline[J][0], uYN[I], uline[J][3], uline[J][1]);// =h
1620 uA[rij, Array.LastIndexOf(uplaatsX, J)] = -Gon(uXN[I], uline[J][2],

 uline[J][0], uYN[I], uline[J][3], uline[J][1], uL[J]) * (-T[uzone[J][0]] / T[uzone[J][1]]); //-g

1621 }
1622 }
1623
1624 }
1625
1626 //when J is not on the interface
1627 else
1628 {
1629 //there can be no problem with L or g*(-To/T1), K1 decides
1630
1631 if (uK1[J] == 0) //u is given so colums should be changed
1632 {
1633 if (I == J)
1634 {
1635 uA[rij, Array.IndexOf(uplaatsX, J)] = -uL[J] / (2 * Math.PI) *

(Math.Log(uL[J] / 2) - 1); //-g
1636 uBt[rij, Array.IndexOf(uplaatsY, J)] = 0.5; //-h
1637 }
1638 else
1639 {
1640 uA[rij, Array.IndexOf(uplaatsX, J)] = -Gon(uXN[I], uline[J][0],

uline[J][2], uYN[I], uline[J][1], uline[J][3], uL[J]); //-g
1641 uBt[rij, Array.IndexOf(uplaatsY, J)] = -Hon(uXN[I], uline[J][0],

uline[J][2], uYN[I], uline[J][1], uline[J][3]); //-h
1642 }
1643 }
1644 else //no problem, colums can stay. (uK1[J] == 1)
1645 {
1646 if (I == J)
1647 {
1648 uA[rij, Array.IndexOf(uplaatsX, J)] = -0.5; //h
1649 uBt[rij, Array.IndexOf(uplaatsY, J)] = uL[J] / (2 * Math.PI) *

(Math.Log(uL[J] / 2) - 1); //g
1650 }
1651 else
1652 {
1653 uA[rij, Array.IndexOf(uplaatsX, J)] = Hon(uXN[I], uline[J][0],

uline[J][2], uYN[I], uline[J][1], uline[J][3]); //h
1654 uBt[rij, Array.IndexOf(uplaatsY, J)] = Gon(uXN[I], uline[J][0],

uline[J][2], uYN[I], uline[J][1], uline[J][3], uL[J]); //g
1655 }
1656 }
1657 }
1658 }
1659 }//end for all J
1660
1661
1662 //write second equation: only for nodes on the interface
1663 if (uzone[I][1] != -1)
1664 {
1665 rij = Array.LastIndexOf(uplaatsX, I);
1666
1667 //write second equation: only for nodes I on the interface
1668 for (int J = 0; J < uzone.GetLength(0); J++)
1669 {
1670 //check if an equation should be written towards this point
1671 if (uzone[J][0] == uzone[I][1] || uzone[J][1] == uzone[I][1])
1672 {
1673
1674

101

25C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

1675 //when J is on the interface
1676 if (uzone[J][1] != -1)
1677 {
1678 //is J defined in same zone as I (otherwise problem with L and g*(-To/

T1)
1679 if (uzone[J][0] == uzone[I][1])
1680 { //they are defined in the same zone: no problem
1681
1682 if (I == J)
1683 {
1684 uA[rij, Array.IndexOf(uplaatsX, J)] = -0.5; // = h
1685 uA[rij, Array.LastIndexOf(uplaatsX, J)] = -uL[J] / (2 * Math.

PI) * (Math.Log(uL[J] / 2) - 1); // =-g, voorlopig geen teken wissel
1686 }
1687 else
1688 {
1689 uA[rij, Array.IndexOf(uplaatsX, J)] = Hon(uXN[I], uline[J][0],

uline[J][2], uYN[I], uline[J][1], uline[J][3]); // = h
1690 uA[rij, Array.LastIndexOf(uplaatsX, J)] = -Gon(uXN[I], uline[J]

[0], uline[J][2], uYN[I], uline[J][1], uline[J][3], uL[J]); // =-g
1691 }
1692
1693 }
1694 else
1695 { //they are not defined in the same zone: pay attention!
1696
1697 if (I == J)
1698 {
1699 uA[rij, Array.IndexOf(uplaatsX, J)] = -0.5;// =h
1700 uA[rij, Array.LastIndexOf(uplaatsX, J)] = -uL[J] / (2 * Math.

PI) * (Math.Log(uL[J] / 2) - 1) * (-T[uzone[J][0]] / T[uzone[J][1]]); //-g
1701 }
1702 else
1703 {
1704 uA[rij, Array.IndexOf(uplaatsX, J)] = Hon(uXN[I], uline[J][2],

uline[J][0], uYN[I], uline[J][3], uline[J][1]);// =h
1705 uA[rij, Array.LastIndexOf(uplaatsX, J)] = -Gon(uXN[I], uline[J]

[2], uline[J][0], uYN[I], uline[J][3], uline[J][1], uL[J]) * (-T[uzone[J][0]] / T[uzone[J][1]]); //
-g

1706 }
1707 }
1708
1709 }
1710
1711 //when J is not on the interface
1712 else
1713 {
1714 //there can be no problem with L or g*(-To/T1), K1 decides
1715
1716 if (uK1[J] == 0) //u is given so colums should be changed
1717 {
1718 if (I == J)
1719 {
1720 uA[rij, Array.IndexOf(uplaatsX, J)] = -uL[J] / (2 * Math.PI) *

(Math.Log(uL[J] / 2) - 1); //-g
1721 uBt[rij, System.Array.IndexOf(uplaatsY, J)] = 0.5; //-h
1722 }
1723 else
1724 {
1725 uA[rij, Array.IndexOf(uplaatsX, J)] = -Gon(uXN[I], uline[J][0],

 uline[J][2], uYN[I], uline[J][1], uline[J][3], uL[J]); //-g
1726 uBt[rij, Array.IndexOf(uplaatsY, J)] = -Hon(uXN[I], uline[J][0]

, uline[J][2], uYN[I], uline[J][1], uline[J][3]); //-h
1727 }
1728 }
1729 else //no problem, colums can stay.
1730 {
1731 if (I == J)
1732 {
1733 uA[rij, Array.IndexOf(uplaatsX, J)] = -0.5; //h
1734 uBt[rij, Array.IndexOf(uplaatsY, J)] = uL[J] / (2 * Math.PI) *

(Math.Log(uL[J] / 2) - 1); //g
1735 }
1736 else

102

26C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

1737 {
1738 uA[rij, Array.IndexOf(uplaatsX, J)] = Hon(uXN[I], uline[J][0],

uline[J][2], uYN[I], uline[J][1], uline[J][3]); //h
1739 uBt[rij, Array.IndexOf(uplaatsY, J)] = Gon(uXN[I], uline[J][0],

 uline[J][2], uYN[I], uline[J][1], uline[J][3], uL[J]); //g
1740 }
1741 }
1742
1743 }
1744 }//end if equation should be written
1745 }
1746 }
1747 }//end for all nodes I
1748
1749 }//end calculateAandBtStart
1750
1751 public void calculateLineorderAndCumulLineEnd(double[][] uline, double[] uL, bool[]

ulineOnCoast, int[] lineorder, double[] cumulLineEnd)
1752 {
1753 //1. Temp store all elements on the coastline
1754 int[] onCoast = new int[lineorder.GetLength(0)];
1755 int counter = 0;
1756 for (int i = 0; i < uline.GetLength(0); i++)
1757 {
1758 if (ulineOnCoast[i] == true)
1759 {
1760 onCoast[counter] = i; //write away the number of the line that is on the coast
1761 counter++;
1762 }
1763 }
1764
1765 //2. Sort them from beginning to end
1766 int[][] numberOfTimesUsed = new int[onCoast.GetLength(0)][];
1767
1768 for (int l = 0; l < onCoast.GetLength(0); l++)
1769 {
1770 //for all lines on the coastline check how many times there left and right node is used
1771 numberOfTimesUsed[l] = new int[2];
1772
1773 for (int j = 0; j < onCoast.GetLength(0); j++)
1774 {
1775 //left node of the line
1776 if ((uline[onCoast[j]][0] == uline[onCoast[l]][0] && uline[onCoast[j]][1] == uline

[onCoast[l]][1]) || (uline[onCoast[j]][2] == uline[onCoast[l]][0] && uline[onCoast[j]][3] == uline
[onCoast[l]][1]))

1777 {
1778 numberOfTimesUsed[l][0]++;
1779 }
1780
1781 //right node of the line
1782 if ((uline[onCoast[j]][0] == uline[onCoast[l]][2] && uline[onCoast[j]][1] == uline

[onCoast[l]][3]) || (uline[onCoast[j]][2] == uline[onCoast[l]][2] && uline[onCoast[j]][3] == uline
[onCoast[l]][3]))

1783 {
1784 numberOfTimesUsed[l][1]++;
1785 }
1786 }
1787 }
1788
1789 //find out where the line starts and ends
1790 int LineStart = 0;
1791 int LineEnd = 0;
1792
1793 for (int i = 0; i < numberOfTimesUsed.GetLength(0); i++)
1794 {
1795 if (numberOfTimesUsed[i][0] == 1)
1796 {
1797 if (LineStart != 0)
1798 {
1799 MessageBox.Show("Multiple possibilities for line beginning");
1800 }
1801 else
1802 {
1803 LineStart = onCoast[i];

103

27C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

1804 }
1805 }
1806
1807 if (numberOfTimesUsed[i][1] == 1)
1808 {
1809 if (LineEnd != 0)
1810 {
1811 MessageBox.Show("Multiple possibilities for line ending");
1812 }
1813 else
1814 {
1815 LineEnd = onCoast[i];
1816 }
1817 }
1818 }
1819
1820 //find the lineorder and store away in array int lineorder[]
1821 lineorder[0] = LineStart;
1822 cumulLineEnd[0] = uL[LineStart];
1823
1824 //A. Calculate lineorder
1825
1826 for (int t = 1; t < onCoast.GetLength(0); t++)
1827 {
1828 for (int l = 0; l < onCoast.GetLength(0); l++)
1829 {
1830 //find where the end of the line t is the same of the beginning of line l
1831 if (uline[lineorder[t - 1]][2] == uline[onCoast[l]][0] && uline[lineorder[t - 1]]

[3] == uline[onCoast[l]][1])
1832 {
1833 lineorder[t] = onCoast[l];
1834 cumulLineEnd[t] = cumulLineEnd[t - 1] + uL[onCoast[l]];
1835 l = lineorder.GetLength(0);
1836 }
1837 }
1838 }
1839
1840
1841 //last point! This should be exactly the end point because otherwise a mistake was made
1842 if (uline[lineorder[lineorder.GetLength(0) - 2]][2] == uline[LineEnd][0] && uline[lineorder

[lineorder.GetLength(0) - 2]][3] == uline[LineEnd][1])
1843 {
1844 lineorder[lineorder.GetLength(0) - 1] = LineEnd;
1845 cumulLineEnd[lineorder.GetLength(0) - 1] = cumulLineEnd[lineorder.GetLength(0) - 2] +

uL[LineEnd];
1846 }
1847 else
1848 {
1849 MessageBox.Show("coastline is not calculated correctly!");
1850 }
1851
1852 }//end calculateLineorderAndCumulLineEnd
1853
1854 public void generatepopulation(string[][] chromosomes, int[] chrLengthWell, int chr1_LengthSpw,

 int chr2_LengthSpw, bool[][] hwell, bool spw)
1855 {
1856 for (int ps = 0; ps < chromosomes.GetLength(0); ps++)
1857 {
1858 int countSubChromosome = 0;
1859 for (int i = 0; i < hwell.GetLength(0); i++)
1860 {
1861 for (int w = 0; w < 3; w++)
1862 {
1863 if (hwell[i][w] == true)
1864 {
1865 chromosomes[ps][countSubChromosome] = "";
1866 for (int j = 0; j < chrLengthWell[i]; j++)
1867 {
1868 int R = Random.Next(0, 2);
1869 chromosomes[ps][countSubChromosome] = chromosomes[ps]

[countSubChromosome] + R;
1870 }
1871 countSubChromosome++;//sub chromosome was made, so to the next one now
1872 }

104

28C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

1873 }
1874 }
1875
1876 //for the sheet pile wall: chr1
1877 if (spw == true)
1878 {
1879 if (chr1_LengthSpw != 0)
1880 {
1881 chromosomes[ps][countSubChromosome] = "";
1882 for (int j = 0; j < chr1_LengthSpw; j++)
1883 {
1884 int R = Random.Next(0, 2);
1885 chromosomes[ps][countSubChromosome] = chromosomes[ps][countSubChromosome] +

 R;
1886 }
1887 countSubChromosome++;
1888 }
1889
1890 if (chr2_LengthSpw != 0)
1891 {
1892 chromosomes[ps][countSubChromosome] = "";
1893 for (int j = 0; j < chr2_LengthSpw; j++)
1894 {
1895 int R = Random.Next(0, 2);
1896 chromosomes[ps][countSubChromosome] = chromosomes[ps][countSubChromosome] +

 R;
1897 }
1898 countSubChromosome++;
1899 }
1900 }
1901
1902
1903 }//end for every ps
1904 } //end generatepopulation
1905
1906 public void CheckIfNeedsToBeCalculated(ref int numberOfValuesSaved, ref bool

needsToBeCalculated, ref double calculatedFitnessTemp, string[] chromosome, string[][]
Calculatedchromosomes, double[] Calculatedfitness)

1907 {
1908 int numberOfSubChromosomes = chromosome.GetLength(0);
1909 needsToBeCalculated = true; //a test will be performed to see if calculation is required
1910
1911 //see if the fitnessvalue is already in the Calculatedfitness matrix
1912 for (int j = 0; j < Calculatedfitness.GetLength(0); j++)
1913 {//j is the counter representing the CalculatedFitness
1914
1915 //multiple chromosomes might have the same fitness so it should be checked if their

subchromosomes are identical
1916 int numOk = 0;
1917 for (int s = 0; s < numberOfSubChromosomes; s++)
1918 {
1919 if (chromosome[s] == Calculatedchromosomes[j][s])
1920 {
1921 numOk++;
1922 }
1923 else
1924 {
1925 s = numberOfSubChromosomes; //if one is not in it, that it can not be the same

any way
1926 }
1927 }//end for s
1928
1929 if (numOk == numberOfSubChromosomes)
1930 {//then there is no need to recalculate
1931 needsToBeCalculated = false;
1932 calculatedFitnessTemp = Calculatedfitness[j];
1933 j = Calculatedfitness.GetLength(0); //so the for loop ends
1934 numberOfValuesSaved++; //this chromosome does not need to be recalculated
1935 }
1936
1937 }//end for each chromosome in the store matrices
1938
1939 }//end CheckIfNeedsToBeCalculated
1940

105

29C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

1941 public void beginAndEndSPW(ref double beginSpw, ref double endSpw, ref int lineBegin, ref int
lineEnd, int[] lineorder, double[] cumulLineEnd, string[][] chromosomes, int r, bool
fixed_spw_length, double spw_length)

1942 {
1943 double lengthSpw = 0;
1944 if (fixed_spw_length == true)
1945 {
1946 //beginSpw from 0 to l_coast - l_spw
1947 beginSpw = doubleChromosome(chromosomes[r][chromosomes[r].GetLength(0) - 1], spw_min,

spw_max, chromosomes[r][chromosomes[r].GetLength(0) - 1].Length);
1948 lengthSpw = spw_length;
1949 }
1950 else
1951 {
1952 beginSpw = doubleChromosome(chromosomes[r][chromosomes[r].GetLength(0) - 2], spw_min,

spw_max, chromosomes[r][chromosomes[r].GetLength(0) - 2].Length);
1953 //length is procentualy calculated from distance beginning to distance end
1954 lengthSpw = doubleChromosome(chromosomes[r][chromosomes[r].GetLength(0) - 1], 0, 1,

chromosomes[r][chromosomes[r].GetLength(0) - 1].Length) * (spw_max - beginSpw);
1955 }
1956
1957 endSpw = beginSpw + lengthSpw;
1958
1959 //calculate on what line the SPW begins
1960 bool foundLine = false;
1961 for (int i = 0; i < lineorder.GetLength(0); i++)
1962 {
1963
1964 if (beginSpw < cumulLineEnd[i])
1965 {
1966 lineBegin = lineorder[i];
1967 i = lineorder.GetLength(0);
1968 foundLine = true;
1969 }
1970 }
1971 if (foundLine == false)
1972 {
1973 lineBegin = lineorder[lineorder.GetLength(0) - 1];
1974 //MessageBox.Show("beginLine is not smaller than end of the sheetpilewall");
1975 }
1976
1977 //calculate on what line the SPW endss
1978 for (int i = 0; i < lineorder.GetLength(0); i++)
1979 {
1980 if (endSpw <= cumulLineEnd[i])
1981 {
1982 lineEnd = lineorder[i];
1983 i = lineorder.GetLength(0);
1984 }
1985 }
1986 if (beginSpw > endSpw)
1987 {
1988 MessageBox.Show("Something seriously went wrong calculating the begin and end

coordinates of the spw!");
1989 }
1990 } //end beginAndEndSpw
1991
1992 public void fillAffectedLines(int[] lineorder, double[] cumulLineEnd, int numberOflinesAffected

, int[] affectedLines, int lineBegin, int lineEnd)
1993 {
1994 int counter = 0;
1995 int t = Array.IndexOf(lineorder, lineBegin);
1996 bool onSWP = new bool();
1997 onSWP = true;
1998 while (onSWP == true)
1999 {
2000 if (lineorder[t] == lineEnd)
2001 {
2002
2003 affectedLines[counter] = lineorder[t];
2004 counter++;
2005 onSWP = false;
2006 }
2007 else

106

30C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

2008 {
2009
2010 affectedLines[counter] = lineorder[t];
2011 counter++;
2012 }
2013 t++; //go to next line
2014 }
2015 }//end fillAffectedLines
2016
2017 public void fillArrayWithValues(int[] affectedLines, bool E1, bool E2, double beginSpw, double

endSpw, int[] lineorder)
2018 {
2019
2020 //1. for all lines that are not affected, just copy
2021 for (int i = 0; i < uline.GetLength(0); i++)
2022 {
2023
2024 line[i] = new double[4];
2025 zone[i] = new int[2];
2026
2027 //step 1: copy all the information that is not affected
2028
2029 if (Array.IndexOf(affectedLines, i) == -1)
2030 {//for all lines that are not affected
2031 //a) line
2032 for (int j = 0; j < 4; j++)
2033 {
2034 Array.Copy(uline[i], j, line[i], j, 1);
2035 }
2036
2037 //b) uXN, uYN, uLineOnCoast,uL,uK1,uBV
2038
2039 Array.Copy(uXN, i, XN, i, 1);
2040 Array.Copy(uYN, i, YN, i, 1);
2041 Array.Copy(ulineOnCoast, i, lineOnCoast, i, 1);
2042 Array.Copy(uL, i, L, i, 1);
2043 Array.Copy(uK1, i, K1, i, 1);
2044 Array.Copy(uBV, i, BV, i, 1);
2045
2046 //c) uzone
2047 for (int j = 0; j < 2; j++)
2048 {
2049 Array.Copy(uzone[i], j, zone[i], j, 1);
2050 }
2051 }//if they are not affected
2052 else
2053 {//when the line is affected (at least part of it is on the SPW)
2054
2055 //Calculate Sbegin and Send
2056 double Send = cumulLineEnd[Array.IndexOf(lineorder, i)]; ;
2057 double Sbegin = Send - uL[i];
2058
2059 //Possibility 1: lineBegin == lineEnd
2060 if (affectedLines.GetLength(0) == 1)
2061 {
2062 if (beginSpw != endSpw)
2063 {
2064 //a) Sbegin == beginSpw && Send == endSpw
2065 if (Sbegin == beginSpw && Send == endSpw)
2066 {
2067 //intire line changes to become SPW, no new line is created
2068 //a) line
2069 for (int j = 0; j < 4; j++)
2070 {
2071 Array.Copy(uline[i], j, line[i], j, 1);
2072 }
2073
2074 //b) uXN, uYN, uLineOnCoast,uL,uK1,uBV
2075
2076 Array.Copy(uXN, i, XN, i, 1);
2077 Array.Copy(uYN, i, YN, i, 1);
2078 Array.Copy(ulineOnCoast, i, lineOnCoast, i, 1);
2079 Array.Copy(uL, i, L, i, 1);
2080 //BV and K should not be copied but set manualy

107

31C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

2081 K1[i] = 1;
2082 BV[i] = 0;
2083
2084 //c) uzone
2085 for (int j = 0; j < 2; j++)
2086 {
2087 Array.Copy(uzone[i], j, zone[i], j, 1);
2088 }
2089 }//end if Sbegin == beginSpw && Send == endSpw
2090 else
2091 {
2092 int row = line.GetLength(0) - 1;
2093
2094 //first have a look at the end
2095 if (E2 == true)
2096 {
2097 //1. calculate begin of the line
2098 double Dx = Dsx(uline, uL, cumulLineEnd, i, endSpw, lineorder);
2099 double Dy = Dsy(uline, uL, cumulLineEnd, i, endSpw, lineorder);
2100 double Xs = uline[i][0] + Dx;
2101 double Ys = uline[i][1] + Dy;
2102 double Length = Math.Sqrt(Math.Pow(Dx, 2) + Math.Pow(Dy, 2));
2103
2104 //ALFA) Write Existing part that is on the SPW (begin original line

 to S)
2105 //a) line
2106
2107 Array.Copy(uline[i], 0, line[i], 0, 1);
2108 Array.Copy(uline[i], 1, line[i], 1, 1);
2109 line[i][2] = Xs;
2110 line[i][3] = Ys;
2111
2112 //b) uXN, uYN, uLineOnCoast,uL,uK1,uBV
2113
2114 XN[i] = (line[i][2] + line[i][0]) / 2;
2115 YN[i] = (line[i][3] + line[i][1]) / 2;
2116 Array.Copy(ulineOnCoast, i, lineOnCoast, i, 1);
2117 L[i] = Length;
2118 K1[i] = 1;
2119 BV[i] = 0;
2120
2121 //c) uzone
2122 for (int j = 0; j < 2; j++)
2123 {
2124 Array.Copy(uzone[i], j, zone[i], j, 1);
2125 }
2126
2127 //BETA) Write the NEW part that is not part of the SPW (S to end

orginal of line) // the extra line!
2128 //a) line
2129 line[row] = new double[4];
2130 line[row][0] = Xs;
2131 line[row][1] = Ys;
2132 Array.Copy(uline[i], 2, line[row], 2, 1);
2133 Array.Copy(uline[i], 3, line[row], 3, 1);
2134
2135
2136 //b) uXN, uYN, uLineOnCoast,uL,uK1,uBV
2137 XN[row] = (line[row][2] + line[row][0]) / 2;
2138 YN[row] = (line[row][3] + line[row][1]) / 2;
2139
2140 Array.Copy(ulineOnCoast, i, lineOnCoast, row, 1);
2141 L[row] = uL[i] - Length;
2142 Array.Copy(uK1, i, K1, row, 1);
2143 Array.Copy(uBV, i, BV, row, 1);
2144
2145 //c) uzone
2146 zone[row] = new int[2];
2147 for (int j = 0; j < 2; j++)
2148 {
2149 Array.Copy(uzone[i], j, zone[row], j, 1);
2150 }
2151 row--; //only if an extra line was added!
2152 }//end if E2 == true

108

32C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

2153 else
2154 {
2155 //the line is SPW until the end of the line (the beginning is

regarded later)
2156 Array.Copy(uline[i], 0, line[i], 0, 1);
2157 Array.Copy(uline[i], 1, line[i], 1, 1);
2158 Array.Copy(uline[i], 2, line[i], 2, 1);
2159 Array.Copy(uline[i], 3, line[i], 3, 1);
2160 Array.Copy(uXN, i, XN, i, 1);
2161 Array.Copy(uYN, i, YN, i, 1);
2162 Array.Copy(uL, i, L, i, 1);
2163 Array.Copy(ulineOnCoast, i, lineOnCoast, i, 1);
2164 K1[i] = 1;//became SPW
2165 BV[i] = 0;//became SPW
2166
2167 for (int j = 0; j < 2; j++)
2168 {
2169 Array.Copy(uzone[i], j, zone[i], j, 1);
2170 }
2171
2172
2173 }// if E2 != true (just copy but change BV, K1)
2174 if (E1 == true)
2175 {
2176 //1. calculate begin of the new line
2177 double Dx = Dsx(uline, uL, cumulLineEnd, i, beginSpw, lineorder);
2178 double Dy = Dsy(uline, uL, cumulLineEnd, i, beginSpw, lineorder);
2179 double Xs = uline[i][0] + Dx;
2180 double Ys = uline[i][1] + Dy;
2181 double Length = Math.Sqrt(Math.Pow(Dx, 2) + Math.Pow(Dy, 2));
2182
2183 //ALFA) Write the NEW part that is not on the SPW (begin original

line to S) // the extra line!
2184 //a) line
2185 line[row] = new double[4];
2186 Array.Copy(uline[i], 0, line[row], 0, 1);
2187 Array.Copy(uline[i], 1, line[row], 1, 1);
2188 line[row][2] = Xs;
2189 line[row][3] = Ys;
2190
2191 //b) uXN, uYN, uLineOnCoast,uL,uK1,uBV
2192
2193 XN[row] = (line[row][2] + line[row][0]) / 2;
2194 YN[row] = (line[row][3] + line[row][1]) / 2;
2195 Array.Copy(ulineOnCoast, i, lineOnCoast, row, 1);
2196 L[row] = Length;
2197 Array.Copy(uK1, i, K1, row, 1);
2198 Array.Copy(uBV, i, BV, row, 1);
2199
2200 //c) uzone
2201 zone[row] = new int[2];
2202 for (int j = 0; j < 2; j++)
2203 {
2204 Array.Copy(uzone[i], j, zone[row], j, 1);
2205 }
2206
2207 //BETA) Change begin coordinates and length of uXY[i] (S to end end

 of the already adapted line uL[i])
2208 //a) line
2209
2210 line[i][0] = Xs;
2211 line[i][1] = Ys;
2212 //x en y coordinate of the end of line i are already set
2213
2214 //b) uXN, uYN, uLineOnCoast,uL,uK1,uBV
2215 XN[i] = (line[i][2] + line[i][0]) / 2;
2216 YN[i] = (line[i][3] + line[i][1]) / 2;
2217
2218 L[i] = Math.Sqrt(Math.Pow(line[i][2] - line[i][0], 2) + Math.Pow

(line[i][3] - line[i][1], 2));
2219 //uK1 and uBV had already been set
2220 }//end if E1 == true
2221 else
2222 {

109

33C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

2223 //nothing needs to change anymore, because it already happend in
the if or else condition for E2==true

2224 }
2225 }//end if Sbegin != beginSpw || Send != endSpw
2226 }//end beginSpw =! endSpw (when are the same nothing should happen)
2227 else
2228 {//when beginSpw == endSpw ==> copy the data
2229 //a) line
2230 for (int j = 0; j < 4; j++)
2231 {
2232 Array.Copy(uline[i], j, line[i], j, 1);
2233 }
2234
2235 //b) uXN, uYN, uLineOnCoast,uL,uK1,uBV
2236
2237 Array.Copy(uXN, i, XN, i, 1);
2238 Array.Copy(uYN, i, YN, i, 1);
2239 Array.Copy(ulineOnCoast, i, lineOnCoast, i, 1);
2240 Array.Copy(uL, i, L, i, 1);
2241 Array.Copy(uK1, i, K1, i, 1);
2242 Array.Copy(uBV, i, BV, i, 1);
2243
2244 //c) uzone
2245 for (int j = 0; j < 2; j++)
2246 {
2247 Array.Copy(uzone[i], j, zone[i], j, 1);
2248 }
2249 }
2250 }//end if beginline == lineEnd
2251
2252
2253 //Possibility 2: lineBegin != lineEnd
2254 else
2255 {
2256 if (i == lineBegin)
2257 {//is begin SPW
2258 if (beginSpw == Sbegin)
2259 {
2260 /* The entire line is SPW
2261 * copy most, but change K1 and BV
2262 * no extra line needs to be calculated
2263 */
2264
2265 //a) line
2266 for (int j = 0; j < 4; j++)
2267 {
2268 Array.Copy(uline[i], j, line[i], j, 1);
2269 }
2270
2271 //b) uXN, uYN, uLineOnCoast,uL,uK1,uBV
2272
2273 Array.Copy(uXN, i, XN, i, 1);
2274 Array.Copy(uYN, i, YN, i, 1);
2275 Array.Copy(ulineOnCoast, i, lineOnCoast, i, 1);
2276 Array.Copy(uL, i, L, i, 1);
2277 //BV and K should not be copied but set manualy
2278 K1[i] = 1;
2279 BV[i] = 0;
2280
2281 //c) uzone
2282 for (int j = 0; j < 2; j++)
2283 {
2284 Array.Copy(uzone[i], j, zone[i], j, 1);
2285 }
2286 }//end if (beginSpw == Sbegin)
2287 else
2288 {
2289 int row = line.GetLength(0) - 1;
2290 //calculate on what row the extra line should be stored
2291 if (E2 == true)
2292 {
2293 row--;
2294 }
2295

110

34C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

2296 //a new line is to be added, and the existing to be changed
2297 //1. calculate begin of the new line
2298 double Dx = Dsx(uline, uL, cumulLineEnd, i, beginSpw, lineorder);
2299 double Dy = Dsy(uline, uL, cumulLineEnd, i, beginSpw, lineorder);
2300 double Xs = uline[i][0] + Dx;
2301 double Ys = uline[i][1] + Dy;
2302 double Length = Math.Sqrt(Math.Pow(Dx, 2) + Math.Pow(Dy, 2));
2303
2304 //ALFA) Write the NEW part that is not on the SPW (begin original line

to S) // the extra line!
2305 //a) line
2306 line[row] = new double[4];
2307 Array.Copy(uline[i], 0, line[row], 0, 1);
2308 Array.Copy(uline[i], 1, line[row], 1, 1);
2309 line[row][2] = Xs;
2310 line[row][3] = Ys;
2311
2312 //b) uXN, uYN, uLineOnCoast,uL,uK1,uBV
2313
2314 XN[row] = (line[row][2] + line[row][0]) / 2;
2315 YN[row] = (line[row][3] + line[row][1]) / 2;
2316 Array.Copy(ulineOnCoast, i, lineOnCoast, row, 1);
2317 L[row] = Length;
2318 Array.Copy(uK1, i, K1, row, 1);
2319 Array.Copy(uBV, i, BV, row, 1);
2320
2321 //c) uzone
2322 zone[row] = new int[2];
2323 for (int j = 0; j < 2; j++)
2324 {
2325 Array.Copy(uzone[i], j, zone[row], j, 1);
2326 }
2327
2328 //BETA) Change begin coordinates and length of uXY[i] (S to end)
2329 //a) line
2330
2331 line[i][0] = Xs;
2332 line[i][1] = Ys;
2333 Array.Copy(uline[i], 2, line[i], 2, 1);
2334 Array.Copy(uline[i], 3, line[i], 3, 1);
2335 Array.Copy(ulineOnCoast, i, lineOnCoast, i, 1);
2336 //b) uXN, uYN, uLineOnCoast,uL,uK1,uBV
2337 XN[i] = (line[i][2] + line[i][0]) / 2;
2338 YN[i] = (line[i][3] + line[i][1]) / 2;
2339
2340 L[i] = Math.Sqrt(Math.Pow(line[i][2] - line[i][0], 2) + Math.Pow(line

[i][3] - line[i][1], 2));
2341 K1[i] = 1;
2342 BV[i] = 0;
2343
2344 for (int j = 0; j < 2; j++)
2345 {
2346 Array.Copy(uzone[i], j, zone[i], j, 1);
2347 }
2348
2349 }//end if (beginSpw != Sbegin)
2350 }//end if i == lineBegin
2351 else if (i == lineEnd)
2352 {//is end SPW
2353 if (endSpw == Send)
2354 {
2355 /* The entire line is SPW
2356 * copy most, but change K1 and BV
2357 * no extra line needs to be calculated
2358 */
2359
2360 //a) line
2361 for (int j = 0; j < 4; j++)
2362 {
2363 Array.Copy(uline[i], j, line[i], j, 1);
2364 }
2365
2366 //b) uXN, uYN, uLineOnCoast,uL,uK1,uBV
2367

111

35C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

2368 Array.Copy(uXN, i, XN, i, 1);
2369 Array.Copy(uYN, i, YN, i, 1);
2370 Array.Copy(ulineOnCoast, i, lineOnCoast, i, 1);
2371 Array.Copy(uL, i, L, i, 1);
2372 //BV and K should not be copied but set manualy
2373 K1[i] = 1;
2374 BV[i] = 0;
2375
2376 //c) uzone
2377 for (int j = 0; j < 2; j++)
2378 {
2379 Array.Copy(uzone[i], j, zone[i], j, 1);
2380 }
2381
2382
2383
2384 }//end if (endSpw == Send)
2385 else
2386 {
2387 int row = line.GetLength(0) - 1;
2388
2389 //a new line is to be added, and the existing to be changed
2390 //1. calculate begin of the new line
2391 double Dx = Dsx(uline, uL, cumulLineEnd, i, endSpw, lineorder);
2392 double Dy = Dsy(uline, uL, cumulLineEnd, i, endSpw, lineorder);
2393 double Xs = uline[i][0] + Dx;
2394 double Ys = uline[i][1] + Dy;
2395 double Length = Math.Sqrt(Math.Pow(Dx, 2) + Math.Pow(Dy, 2));
2396
2397 //ALFA) Write the NEW part that is not on the SPW (S to end line) //

the extra line!
2398 //a) line
2399 line[row] = new double[4];
2400 Array.Copy(uline[i], 2, line[row], 2, 1);
2401 Array.Copy(uline[i], 3, line[row], 3, 1);
2402 line[row][0] = Xs;
2403 line[row][1] = Ys;
2404
2405 //b) uXN, uYN, uLineOnCoast,uL,uK1,uBV
2406
2407 XN[row] = (line[row][2] + line[row][0]) / 2;
2408 YN[row] = (line[row][3] + line[row][1]) / 2;
2409 Array.Copy(ulineOnCoast, i, lineOnCoast, row, 1);
2410 L[row] = uL[i] - Length;
2411 Array.Copy(uK1, i, K1, row, 1);
2412 Array.Copy(uBV, i, BV, row, 1);
2413
2414 //c) uzone
2415 zone[row] = new int[2];
2416 for (int j = 0; j < 2; j++)
2417 {
2418 Array.Copy(uzone[i], j, zone[row], j, 1);
2419 }
2420
2421 //BETA) The existing line is now shortened and is SPW
2422 //a) line
2423
2424 line[i][2] = Xs;
2425 line[i][3] = Ys;
2426 Array.Copy(uline[i], 0, line[i], 0, 1);
2427 Array.Copy(uline[i], 1, line[i], 1, 1);
2428
2429 //b) uXN, uYN, uLineOnCoast,uL,uK1,uBV
2430 XN[i] = (line[i][2] + line[i][0]) / 2;
2431 YN[i] = (line[i][3] + line[i][1]) / 2;
2432 Array.Copy(ulineOnCoast, i, lineOnCoast, i, 1);
2433 L[i] = Length;
2434 K1[i] = 1;
2435 BV[i] = 0;
2436
2437 for (int j = 0; j < 2; j++)
2438 {
2439 Array.Copy(uzone[i], j, zone[i], j, 1);
2440 }

112

36C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

2441 }// end if (endSpw != Send)
2442 }//end if (i == lineEnd)
2443 else
2444 {//line is not holding end or begin but is just SPW
2445
2446 //a) line
2447 for (int j = 0; j < 4; j++)
2448 {
2449 Array.Copy(uline[i], j, line[i], j, 1);
2450 }
2451
2452 //b) uXN, uYN, uLineOnCoast,uL,uK1,uBV
2453
2454 Array.Copy(uXN, i, XN, i, 1);
2455 Array.Copy(uYN, i, YN, i, 1);
2456 Array.Copy(ulineOnCoast, i, lineOnCoast, i, 1);
2457 Array.Copy(uL, i, L, i, 1);
2458 //BV and K should not be copied but set manualy
2459 K1[i] = 1;
2460 BV[i] = 0;
2461
2462 //c) uzone
2463 for (int j = 0; j < 2; j++)
2464 {
2465 Array.Copy(uzone[i], j, zone[i], j, 1);
2466 }
2467
2468 }//end if line is not holding end or begin but is just SPW
2469 }//end if beginline != lineEnd
2470
2471
2472 }//end for all lines that are affected
2473 }//end for every line i loop
2474 }//end fillArrayWithUnchangedValues
2475
2476 public void CheckIfNeedsToBeCalculatedWell(int w, ref int numberOfValuesSavedWell, ref bool

needsToBeCalculatedWell, ref double[][] well, double[] CalculatedWellZone, double[][]
CalculatedWellPosition)

2477 {
2478 needsToBeCalculatedWell = true; //a test will be performed to see if calculation is

required
2479
2480 //see if the fitnessvalue is already in the Calculatedfitness matrix
2481 for (int j = 0; j < CalculatedWellPosition.GetLength(0); j++)
2482 {//j is the counter representing the CalculatedFitness
2483 if (well[w][0] == CalculatedWellPosition[j][0])
2484 {
2485 if (well[w][1] == CalculatedWellPosition[j][1])
2486 {
2487 needsToBeCalculatedWell = false; //no need to recalculate
2488 Array.Copy(CalculatedWellZone, j, well[w], 3, 1);//assign the value
2489 j = CalculatedWellPosition.GetLength(0); //stop the search
2490 numberOfValuesSavedWell++; //calculation saved
2491 }
2492 }
2493 }//end for each chromosome in the store matrice
2494 }//end CheckIfNeedsToBeCalculatedWell
2495
2496 public void findOutZoneIntellegint(ref double[][] bron, int w)
2497 {
2498
2499 /**
2500 * function valid for wells that are on the interface or in any of the subdomains
2501 * when well is on the boundary an error will occur!
2502 * Situations like this will never occur because the conditions on the boundary
2503 * are fixed! a well should thus never be positionated there!
2504 */
2505 //for each well, the zonenumber will be stored here
2506 int[][] zoneNumber = new int[bron.GetLength(0)][];
2507
2508 zoneNumber[w] = new int[2];
2509
2510 //variables needed for this function
2511 double[][] linesWithSameXunder = new double[0][]; //first position is for the number of the

113

37C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

 line
2512 double[][] linesWithSameXabove = new double[0][]; //second position is for the distance

between the well and the line
2513 double[][] linesWithSameYleft = new double[0][];
2514 double[][] linesWithSameYright = new double[0][];
2515
2516 double YXw = 0;
2517 double XYw = 0;
2518 double m = 0; //rico of the line
2519
2520 //variable necessary to check if on interface or boundary!
2521 bool found = new bool();
2522 found = false;
2523
2524
2525 //check all the lines in the project
2526 for (int l = 0; l < line.GetLength(0); l++)
2527 {
2528 //check the X-coordinates
2529 if ((bron[w][0] >= line[l][0] && bron[w][0] <= line[l][2]) || (bron[w][0] <= line[l][0]

 && bron[w][0] >= line[l][2]))
2530 {
2531 //1. calculate Y(Xw) (X is known, Y is unknown)
2532 if (line[l][0] == line[l][2])
2533 { //m would be give devide by 0 error
2534 YXw = YN[l];
2535 }
2536 else
2537 {
2538 m = (line[l][3] - line[l][1]) / (line[l][2] - line[l][0]);
2539 YXw = m * (bron[w][0] - line[l][0]) + line[l][1];
2540 }
2541
2542 //2. Fill in the array linesWith...
2543 if (YXw == bron[w][1])
2544 {
2545 //increase size by one
2546 Array.Resize(ref linesWithSameXabove, linesWithSameXabove.GetLength(0) + 1);
2547 Array.Resize(ref linesWithSameXunder, linesWithSameXunder.GetLength(0) + 1);
2548
2549 //create new element
2550 linesWithSameXabove[linesWithSameXabove.GetLength(0) - 1] = new double[2];
2551 linesWithSameXunder[linesWithSameXunder.GetLength(0) - 1] = new double[2];
2552
2553 //insert values
2554 linesWithSameXabove[linesWithSameXabove.GetLength(0) - 1][0] = l;
2555 linesWithSameXabove[linesWithSameXabove.GetLength(0) - 1][1] = 0;
2556 linesWithSameXunder[linesWithSameXunder.GetLength(0) - 1][0] = l;
2557 linesWithSameXunder[linesWithSameXunder.GetLength(0) - 1][1] = 0;
2558 }
2559
2560 if (YXw > bron[w][1])
2561 { //above it
2562 Array.Resize(ref linesWithSameXabove, linesWithSameXabove.GetLength(0) + 1);
2563 linesWithSameXabove[linesWithSameXabove.GetLength(0) - 1] = new double[2]; //

first position for its zone, and second for its X coordinate, later on used to calculate the
closest line

2564 linesWithSameXabove[linesWithSameXabove.GetLength(0) - 1][0] = l;
2565 linesWithSameXabove[linesWithSameXabove.GetLength(0) - 1][1] = Math.Abs(YXw -

bron[w][1]);
2566 }
2567
2568 if (YXw < bron[w][1])
2569 { //above it
2570 Array.Resize(ref linesWithSameXunder, linesWithSameXunder.GetLength(0) + 1);
2571 linesWithSameXunder[linesWithSameXunder.GetLength(0) - 1] = new double[2];
2572 linesWithSameXunder[linesWithSameXunder.GetLength(0) - 1][0] = l;
2573 linesWithSameXunder[linesWithSameXunder.GetLength(0) - 1][1] = Math.Abs(YXw -

bron[w][1]);
2574 }
2575
2576 }
2577 //check the Y-coordinates
2578 if ((bron[w][1] >= line[l][1] && bron[w][1] <= line[l][3]) || (bron[w][1] <= line[l][1]

114

38C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

 && bron[w][1] >= line[l][3]))
2579 {
2580 //1. calculate X(Yw) (Y is known, X is unknown)
2581 if (line[l][0] == line[l][2])
2582 { //m would be give devide by 0 error
2583 XYw = XN[l];
2584 }
2585 else
2586 {
2587 m = (line[l][3] - line[l][1]) / (line[l][2] - line[l][0]);
2588 if (m == 0)
2589 {
2590 XYw = XN[l];
2591 }
2592 else
2593 {
2594 XYw = (bron[w][1] + m * line[l][0] - line[l][1]) / m;
2595 }
2596 }
2597
2598 //2. Fill in the array linesWith...
2599 if (XYw == bron[w][0])
2600 {
2601 //increase size by one
2602 Array.Resize(ref linesWithSameYleft, linesWithSameYleft.GetLength(0) + 1);
2603 Array.Resize(ref linesWithSameYright, linesWithSameYright.GetLength(0) + 1);
2604
2605 //create new element
2606 linesWithSameYleft[linesWithSameYleft.GetLength(0) - 1] = new double[2];
2607 linesWithSameYright[linesWithSameYright.GetLength(0) - 1] = new double[2];
2608
2609 //insert values
2610 linesWithSameYleft[linesWithSameYleft.GetLength(0) - 1][0] = l;
2611 linesWithSameYleft[linesWithSameYleft.GetLength(0) - 1][1] = 0;
2612 linesWithSameYright[linesWithSameYright.GetLength(0) - 1][0] = l;
2613 linesWithSameYright[linesWithSameYright.GetLength(0) - 1][1] = 0;
2614 }
2615
2616 if (XYw > bron[w][0])
2617 { //right of it it
2618 Array.Resize(ref linesWithSameYright, linesWithSameYright.GetLength(0) + 1);
2619 linesWithSameYright[linesWithSameYright.GetLength(0) - 1] = new double[2];
2620 linesWithSameYright[linesWithSameYright.GetLength(0) - 1][0] = l;
2621 linesWithSameYright[linesWithSameYright.GetLength(0) - 1][1] = Math.Abs(XYw -

bron[w][0]);
2622 }
2623
2624 if (XYw < bron[w][0])
2625 { //left of it
2626 Array.Resize(ref linesWithSameYleft, linesWithSameYleft.GetLength(0) + 1);
2627 linesWithSameYleft[linesWithSameYleft.GetLength(0) - 1] = new double[2];
2628 linesWithSameYleft[linesWithSameYleft.GetLength(0) - 1][0] = l;
2629 linesWithSameYleft[linesWithSameYleft.GetLength(0) - 1][1] = Math.Abs(XYw -

bron[w][0]);
2630 }
2631
2632 }//end check Y-coordinates
2633 }//end for all lines
2634
2635 //The arrays should now be sorted
2636 sortJarredArray(linesWithSameXabove);
2637 sortJarredArray(linesWithSameXunder);
2638 sortJarredArray(linesWithSameYleft);
2639 sortJarredArray(linesWithSameYright);
2640
2641 /* on the first position of each array is now the smallest distance
2642 * between the well and the lines, going through all of them will
2643 * result in the zone that the well is in!
2644 */
2645
2646 found = false;
2647
2648 //posibility 1: well is on a line linesWith...[0][1] = 0
2649 if (linesWithSameXabove[0][1] == 0 || linesWithSameYleft[0][1] == 0)

115

39C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

2650 {
2651 //on the interface or on the boundary
2652 if (linesWithSameXabove[0][1] == 0)
2653 {
2654 zoneNumber[w][0] = zone[(int)linesWithSameXabove[0][0]][0];
2655 zoneNumber[w][1] = zone[(int)linesWithSameXabove[0][0]][1];
2656 }
2657 if (linesWithSameYleft[0][1] == 0)
2658 {
2659 zoneNumber[w][0] = zone[(int)linesWithSameYleft[0][0]][0];
2660 zoneNumber[w][1] = zone[(int)linesWithSameYleft[0][0]][1];
2661 }
2662 found = true;
2663 }
2664
2665 else
2666 {
2667 //find the zone (4 equal zone numbers)
2668 //check if rightminP, underminP, leftminP in een van de twee zone elementen aboveminP

zijn 1ste zone zitten hebben
2669
2670 if (zone[(int)linesWithSameXabove[0][0]][0] == zone[(int)linesWithSameYright[0][0]][0]

|| zone[(int)linesWithSameXabove[0][0]][0] == zone[(int)linesWithSameYright[0][0]][1])
2671 {
2672 if (zone[(int)linesWithSameXabove[0][0]][0] == zone[(int)linesWithSameXunder[0][0]]

[0] || zone[(int)linesWithSameXabove[0][0]][0] == zone[(int)linesWithSameXunder[0][0]][1])
2673 {
2674 if (zone[(int)linesWithSameXabove[0][0]][0] == zone[(int)linesWithSameYleft[0]

[0]][0] || zone[(int)linesWithSameXabove[0][0]][0] == zone[(int)linesWithSameYleft[0][0]][1])
2675 {
2676 if (zone[(int)linesWithSameXabove[0][0]][0] != -1)
2677 {
2678 zoneNumber[w][0] = zone[(int)linesWithSameXabove[0][0]][0];
2679 found = true;
2680 }
2681 else { zoneNumber[w][0] = -1; }
2682 }
2683 else { zoneNumber[w][1] = -1; }
2684 }
2685 else { zoneNumber[w][1] = -1; }
2686 }
2687 else { zoneNumber[w][1] = -1; }
2688
2689 if (zone[(int)linesWithSameXabove[0][0]][1] == zone[(int)linesWithSameYright[0][0]][0]

|| zone[(int)linesWithSameXabove[0][0]][1] == zone[(int)linesWithSameYright[0][0]][1])
2690 {
2691 if (zone[(int)linesWithSameXabove[0][0]][1] == zone[(int)linesWithSameXunder[0][0]]

[0] || zone[(int)linesWithSameXabove[0][0]][1] == zone[(int)linesWithSameXunder[0][0]][1])
2692 {
2693 if (zone[(int)linesWithSameXabove[0][0]][1] == zone[(int)linesWithSameYleft[0]

[0]][0] || zone[(int)linesWithSameXabove[0][0]][1] == zone[(int)linesWithSameYleft[0][0]][1])
2694 {
2695 if (zone[(int)linesWithSameXabove[0][0]][1] != -1)
2696 {
2697 if (found != true)
2698 {
2699 zoneNumber[w][1] = zone[(int)linesWithSameXabove[0][0]][1];
2700 found = true;
2701 }
2702 else
2703 {
2704 /* here is the problem that it might be that the well is located
2705 * in a zone that is located in an other zone. The for lines around
2706 * the well will thus have exactly the same two zones! An extra eq
2707 * will now decide in what region it is located
2708 */
2709 bool second = new bool();
2710 second = false;
2711
2712 if (linesWithSameXabove.GetLength(0) > 1)
2713 {
2714 if (linesWithSameXabove[0][0] == linesWithSameXabove[1][0])
2715 {
2716 if (linesWithSameXabove.GetLength(0) > 2)

116

40C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

2717 {
2718 if (zoneNumber[w][0] == zone[(int)linesWithSameXabove

[2][0]][0] || zoneNumber[w][0] == zone[(int)linesWithSameXabove[2][0]][1])
2719 {
2720 zoneNumber[w][0] = zoneNumber[w][1];
2721 zoneNumber[w][1] = -1;
2722 }
2723 else
2724 {
2725 zoneNumber[w][1] = -1;
2726 }
2727 second = true; //found out what is the exact zone
2728 }
2729 }
2730 else
2731 {
2732 if (zoneNumber[w][0] == zone[(int)linesWithSameXabove[1]

[0]][0] || zoneNumber[w][0] == zone[(int)linesWithSameXabove[1][0]][1])
2733 {
2734 zoneNumber[w][0] = zoneNumber[w][1];
2735 zoneNumber[w][1] = -1;
2736 }
2737 else
2738 {
2739 zoneNumber[w][1] = -1;
2740 }
2741 second = true; //found out what is the exact zone
2742 }
2743 }//end for the 1st point (above the well)
2744 if (second == false)
2745 {//for the second point: right of the well
2746 if (linesWithSameYright.GetLength(0) > 1)
2747 {
2748 if (linesWithSameYright[0][0] == linesWithSameYright[1][0])
2749 {
2750 if (linesWithSameYright.GetLength(0) > 2)
2751 {
2752 if (zoneNumber[w][0] == zone[(int)

linesWithSameYright[2][0]][0] || zoneNumber[w][0] == zone[(int)linesWithSameYright[2][0]][1])
2753 {
2754 zoneNumber[w][0] = zoneNumber[w][1];
2755 zoneNumber[w][1] = -1;
2756 }
2757 else
2758 {
2759 zoneNumber[w][1] = -1;
2760 }
2761 second = true; //found out what is the exact zone

2762 }
2763 }
2764 else
2765 {
2766 if (zoneNumber[w][0] == zone[(int)linesWithSameYright

[1][0]][0] || zoneNumber[w][0] == zone[(int)linesWithSameYright[1][0]][1])
2767 {
2768 zoneNumber[w][0] = zoneNumber[w][1];
2769 zoneNumber[w][1] = -1;
2770 }
2771 else
2772 {
2773 zoneNumber[w][1] = -1;
2774 }
2775 second = true; //found out what is the exact zone
2776 }
2777 }
2778 }//end if second is false for 2nd point
2779 if (second == false)
2780 {//for the 3th point (under)
2781 if (linesWithSameXunder.GetLength(0) > 1)
2782 {
2783 if (linesWithSameXunder[0][0] == linesWithSameXunder[1][0])
2784 {
2785 if (linesWithSameXunder.GetLength(0) > 2)

117

41C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

2786 {
2787 if (zoneNumber[w][0] == zone[(int)

linesWithSameXunder[2][0]][0] || zoneNumber[w][0] == zone[(int)linesWithSameXunder[2][0]][1])
2788 {
2789 zoneNumber[w][0] = zoneNumber[w][1];
2790 zoneNumber[w][1] = -1;
2791 }
2792 else
2793 {
2794 zoneNumber[w][1] = -1;
2795 }
2796 second = true; //found out what is the exact zone

2797 }
2798 }
2799 else
2800 {
2801 if (zoneNumber[w][0] == zone[(int)linesWithSameXunder

[1][0]][0] || zoneNumber[w][0] == zone[(int)linesWithSameXunder[1][0]][1])
2802 {
2803 zoneNumber[w][0] = zoneNumber[w][1];
2804 zoneNumber[w][1] = -1;
2805 }
2806 else
2807 {
2808 zoneNumber[w][1] = -1;
2809 }
2810 second = true; //found out what is the exact zone
2811 }
2812 }
2813 }//end if second is false for 3th point
2814 if (second == false)
2815 {//for the 4th point (left)
2816 if (linesWithSameXunder.GetLength(0) > 1)
2817 {
2818 if (linesWithSameYleft[0][0] == linesWithSameYleft[1][0])
2819 {
2820 if (linesWithSameYleft.GetLength(0) > 2)
2821 {
2822 if (zoneNumber[w][0] == zone[(int)

linesWithSameYleft[2][0]][0] || zoneNumber[w][0] == zone[(int)linesWithSameYleft[2][0]][1])
2823 {
2824 zoneNumber[w][0] = zoneNumber[w][1];
2825 zoneNumber[w][1] = -1;
2826 }
2827 else
2828 {
2829 zoneNumber[w][1] = -1;
2830 }
2831 second = true; //found out what is the exact zone

2832 }
2833 }
2834 else
2835 {
2836 if (zoneNumber[w][0] == zone[(int)linesWithSameYleft[1]

[0]][0] || zoneNumber[w][0] == zone[(int)linesWithSameYleft[1][0]][1])
2837 {
2838 zoneNumber[w][0] = zoneNumber[w][1];
2839 zoneNumber[w][1] = -1;
2840 }
2841 else
2842 {
2843 zoneNumber[w][1] = -1;
2844 }
2845 second = true; //found out what is the exact zone
2846 }
2847 }
2848 }//end if second is false for 4th point
2849
2850 //if still false: then give error
2851 MessageBox.Show("Was trying to find the exact zone as an inclosed

zone but failed");
2852 }

118

42C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

2853 }
2854 else { zoneNumber[w][1] = -1; }
2855 }
2856 else { zoneNumber[w][1] = -1; }
2857 }
2858 else { zoneNumber[w][1] = -1; }
2859 }
2860 else { zoneNumber[w][1] = -1; }
2861 }
2862
2863 if (found == false)
2864 {
2865 MessageBox.Show("An error occured, it was impossible to retrieve the zonenumber");
2866 }
2867
2868
2869
2870
2871 //store the zone in all well[w][3]
2872
2873 if (zoneNumber[w][0] == -1 && zoneNumber[w][1] == -1)
2874 {
2875 MessageBox.Show("No zone found");
2876 }
2877 else if (zoneNumber[w][0] == -1 || zoneNumber[w][1] == -1)
2878 {
2879 //one zone is found
2880 if (zoneNumber[w][0] == -1)
2881 {
2882 bron[w][3] = (int)zoneNumber[w][1];
2883 }
2884 else
2885 {
2886 bron[w][3] = (int)zoneNumber[w][0];
2887 }
2888 }
2889
2890 }//end findOutZoneIntelligent
2891
2892 public void fillCalculatedWellPosition(double[][] well, int i, ref double[][]

CalculatedWellPosition, ref double[] CalculatedWellZone)
2893 {
2894 bool copy = new bool();
2895
2896 copy = true; //A test will find out if it should be set to false
2897
2898 //see if the fitnessvalue is already in the Calculatedfitness matrix
2899 for (int j = 0; j < CalculatedWellPosition.GetLength(0); j++)
2900 {//j is the counter representing the CalculatedFitness
2901
2902 if (well[i][0] == CalculatedWellPosition[j][0])
2903 {
2904 //multiple well positions with the correspondending x value may exist, the y should

 be checked as well
2905 if (well[i][1] == CalculatedWellPosition[j][1])
2906 {
2907 copy = false;
2908 j = CalculatedWellPosition.GetLength(0);
2909 }
2910 }//end if (fitness[i] == Calculatedfitness[j])
2911 }//end for each chromosome in the store matrices
2912
2913 if (copy == true)
2914 {
2915 //0. New size of the arrays
2916 int newSize = CalculatedWellPosition.GetLength(0) + 1;
2917
2918 //1. Resize the CalculatedWellZone and fill
2919 Array.Resize(ref CalculatedWellZone, newSize);
2920 Array.Copy(well[i], 3, CalculatedWellZone, newSize - 1, 1);
2921
2922 //2. Resize the CalculatedChromosomes and fill
2923 Array.Resize(ref CalculatedWellPosition, newSize);
2924 CalculatedWellPosition[newSize - 1] = new double[2];

119

43C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

2925 for (int s = 0; s < 2; s++)
2926 {
2927 Array.Copy(well[i], s, CalculatedWellPosition[newSize - 1], s, 1);
2928 }
2929 }//end if (copy == true)
2930 }//end void fillCalculatedChromosomes
2931
2932 public void resizeMultiDimensionalArray(ref double[,] original, int rows, int cols)
2933 {
2934 double[,] newArray = new double[rows, cols];
2935 original = newArray;
2936 }//end resizeMultiDimensionalArray
2937
2938 public void AddToUPlaatsXandY(ref int[] uplaatsX, ref int[] uplaatsY, int[][] zone, bool[]

lineOnCoast, int numberOfCoastLines)
2939 {
2940 int i = uplaatsX.GetLength(0) - numberOfCoastLines;
2941 int j = uplaatsY.GetLength(0) - numberOfCoastLines;
2942
2943 //for all the nodes not on the interface
2944 for (int I = 0; I < zone.GetLength(0); I++)
2945 {
2946 if (lineOnCoast[I] == true)
2947 {
2948 uplaatsX[i] = I; //nodes have to be numbers from one to N, and always increased by

1.
2949 uplaatsY[j] = I;
2950 i++;
2951 j++;
2952
2953 if (zone[I][1] != -1)
2954 {
2955 MessageBox.Show("Error while calculating uplaatsX");
2956 }
2957 }
2958 }
2959 }//addToUPlaatsXandY
2960
2961 public void CopyKnownValuesOfAandBt(double[,] uA, double[,] uBt, double[,] A, double[,] Bt)
2962 {
2963 //first copy everything for uA to A
2964 for (int i = 0; i < uA.GetLength(0); i++)
2965 {
2966 for (int j = 0; j < uA.GetLength(1); j++)
2967 {
2968 double tempElement = uA[i, j];
2969 A[i, j] = tempElement;
2970 }
2971 }
2972
2973 //second copy everything from uBt to Bt
2974 for (int i = 0; i < uBt.GetLength(0); i++)
2975 {
2976 for (int j = 0; j < uBt.GetLength(1); j++)
2977 {
2978 double tempElement = uBt[i, j];
2979 Bt[i, j] = tempElement;
2980 }
2981 }
2982
2983 }//end CopyKnownValuesOfAandBt
2984
2985 public void calculateAandBt(double[,] uA, double[,] uBt, ref double[,] A, ref double[,] Bt, int

[] uplaatsX, int[] uplaatsY, int[] K, int[][] zone, double[][] line, double[] L, double[] XN,
double[] YN, double[] T, bool[] lineOnCoast, bool[,] Acal, bool[,] Btcal)

2986 {
2987 for (int I = 0; I < zone.GetLength(0); I++)
2988 {
2989 int rij = Array.IndexOf(uplaatsX, I);
2990
2991 //write first equation: for node on interface or not, it is the same
2992 for (int J = 0; J < zone.GetLength(0); J++)
2993 {
2994 if (lineOnCoast[I] == true || lineOnCoast[J] == true)

120

44C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

2995 {
2996 if (zone[J][0] == zone[I][0] || zone[J][1] == zone[I][0])
2997 {
2998 //when J is on the interface
2999 if (zone[J][1] != -1)
3000 {
3001 Acal[rij, Array.IndexOf(uplaatsX, J)] = true;
3002 Acal[rij, Array.LastIndexOf(uplaatsX, J)] = true;
3003
3004 //is J defined in same zone as I (otherwise problem with L and g*(-To/

T1)
3005 if (zone[J][0] == zone[I][0])
3006 { //they are defined in the same zone: no problem
3007 if (I == J)
3008 {
3009 A[rij, Array.IndexOf(uplaatsX, J)] = -0.5; // = h
3010 A[rij, Array.LastIndexOf(uplaatsX, J)] = -L[J] / (2 * Math.PI)

* (Math.Log(L[J] / 2) - 1); // =-g
3011 }
3012 else
3013 {
3014 A[rij, Array.IndexOf(uplaatsX, J)] = Hon(XN[I], line[J][0],

line[J][2], YN[I], line[J][1], line[J][3]); // = h
3015 A[rij, Array.LastIndexOf(uplaatsX, J)] = -Gon(XN[I], line[J][0]

, line[J][2], YN[I], line[J][1], line[J][3], L[J]); // =-g
3016 }
3017 }
3018 else
3019 { //they are not defined in the same zone: pay attention!
3020 if (I == J)
3021 {
3022 A[rij, Array.IndexOf(uplaatsX, J)] = -0.5;// =h
3023 A[rij, Array.LastIndexOf(uplaatsX, J)] = -L[J] / (2 * Math.PI)

* (Math.Log(L[J] / 2) - 1) * (-T[zone[J][0]] / T[zone[J][1]]);//-g
3024 }
3025 else
3026 {
3027 A[rij, Array.IndexOf(uplaatsX, J)] = Hon(XN[I], line[J][2],

line[J][0], YN[I], line[J][3], line[J][1]);// =h
3028 A[rij, Array.LastIndexOf(uplaatsX, J)] = -Gon(XN[I], line[J][2]

, line[J][0], YN[I], line[J][3], line[J][1], L[J]) * (-T[zone[J][0]] / T[zone[J][1]]); //-g

3029 }
3030 }
3031
3032 }
3033
3034 //when J is not on the interface
3035 else
3036 {
3037 //there can be no problem with L or g*(-To/T1), K1 decides
3038 Acal[rij, Array.IndexOf(uplaatsX, J)] = true;
3039 Btcal[rij, Array.IndexOf(uplaatsY, J)] = true;
3040
3041 if (K1[J] == 0) //u is given so colums should be changed
3042 {
3043 if (I == J)
3044 {
3045 A[rij, Array.IndexOf(uplaatsX, J)] = -L[J] / (2 * Math.PI) *

(Math.Log(L[J] / 2) - 1); //-g
3046 Bt[rij, Array.IndexOf(uplaatsY, J)] = 0.5; //-h
3047 }
3048 else
3049 {
3050 A[rij, Array.IndexOf(uplaatsX, J)] = -Gon(XN[I], line[J][0],

line[J][2], YN[I], line[J][1], line[J][3], L[J]); //-g
3051 Bt[rij, Array.IndexOf(uplaatsY, J)] = -Hon(XN[I], line[J][0],

line[J][2], YN[I], line[J][1], line[J][3]); //-h
3052 }
3053 }
3054 else //no problem, colums can stay. (uK1[J] == 1)
3055 {
3056 if (I == J)
3057 {

121

45C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

3058 A[rij, Array.IndexOf(uplaatsX, J)] = -0.5; //h
3059 Bt[rij, Array.IndexOf(uplaatsY, J)] = L[J] / (2 * Math.PI) *

(Math.Log(L[J] / 2) - 1); //g
3060 }
3061 else
3062 {
3063 A[rij, Array.IndexOf(uplaatsX, J)] = Hon(XN[I], line[J][0],

line[J][2], YN[I], line[J][1], line[J][3]); //h
3064 Bt[rij, Array.IndexOf(uplaatsY, J)] = Gon(XN[I], line[J][0],

line[J][2], YN[I], line[J][1], line[J][3], L[J]); //g
3065 }
3066 }
3067 }
3068 }
3069 }//end if one of the line elements is on the coast
3070 }//end for all J
3071
3072
3073 //write second equation: only for nodes on the interface
3074 if (zone[I][1] != -1)
3075 {
3076 rij = Array.LastIndexOf(uplaatsX, I);
3077
3078 //write second equation: only for nodes I on the interface
3079 for (int J = 0; J < zone.GetLength(0); J++)
3080 {
3081 if (lineOnCoast[I] == true || lineOnCoast[J] == true)
3082 {
3083
3084 //check if an equation should be written towards this point
3085 if (zone[J][0] == zone[I][1] || zone[J][1] == zone[I][1])
3086 {
3087 //when J is on the interface
3088 if (zone[J][1] != -1)
3089 {
3090 Acal[rij, Array.IndexOf(uplaatsX, J)] = true;
3091 Acal[rij, Array.LastIndexOf(uplaatsX, J)] = true;
3092
3093 //is J defined in same zone as I (otherwise problem with L and g*(-

To/T1)
3094 if (zone[J][0] == zone[I][1])
3095 { //they are defined in the same zone: no problem
3096
3097 if (I == J)
3098 {
3099 A[rij, Array.IndexOf(uplaatsX, J)] = -0.5; // = h
3100 A[rij, Array.LastIndexOf(uplaatsX, J)] = -L[J] / (2 * Math.

PI) * (Math.Log(L[J] / 2) - 1); // =-g, voorlopig geen teken wissel
3101 }
3102 else
3103 {
3104 A[rij, Array.IndexOf(uplaatsX, J)] = Hon(XN[I], line[J][0],

 line[J][2], YN[I], line[J][1], line[J][3]); // = h
3105 A[rij, Array.LastIndexOf(uplaatsX, J)] = -Gon(XN[I], line

[J][0], line[J][2], YN[I], line[J][1], line[J][3], L[J]); // =-g
3106 }
3107
3108 }
3109 else
3110 { //they are not defined in the same zone: pay attention!
3111
3112 if (I == J)
3113 {
3114 A[rij, Array.IndexOf(uplaatsX, J)] = -0.5;// =h
3115 A[rij, Array.LastIndexOf(uplaatsX, J)] = -L[J] / (2 * Math.

PI) * (Math.Log(L[J] / 2) - 1) * (-T[zone[J][0]] / T[zone[J][1]]); //-g
3116 }
3117 else
3118 {
3119 A[rij, Array.IndexOf(uplaatsX, J)] = Hon(XN[I], line[J][2],

 line[J][0], YN[I], line[J][3], line[J][1]);// =h
3120 A[rij, Array.LastIndexOf(uplaatsX, J)] = -Gon(XN[I], line

[J][2], line[J][0], YN[I], line[J][3], line[J][1], L[J]) * (-T[zone[J][0]] / T[zone[J][1]]); //-g
3121 }

122

46C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

3122 }
3123
3124 }
3125
3126 //when J is not on the interface
3127 else
3128 {
3129 Acal[rij, Array.IndexOf(uplaatsX, J)] = true;
3130 Btcal[rij, System.Array.IndexOf(uplaatsY, J)] = true;
3131 //there can be no problem with L or g*(-To/T1), K1 decides
3132
3133 if (K1[J] == 0) //u is given so colums should be changed
3134 {
3135 if (I == J)
3136 {
3137 A[rij, Array.IndexOf(uplaatsX, J)] = -L[J] / (2 * Math.PI)

* (Math.Log(L[J] / 2) - 1); //-g
3138 Bt[rij, Array.IndexOf(uplaatsY, J)] = 0.5; //-h
3139 }
3140 else
3141 {
3142 A[rij, Array.IndexOf(uplaatsX, J)] = -Gon(XN[I], line[J][0]

, line[J][2], YN[I], line[J][1], line[J][3], L[J]); //-g
3143 Bt[rij, Array.IndexOf(uplaatsY, J)] = -Hon(XN[I], line[J]

[0], line[J][2], YN[I], line[J][1], line[J][3]); //-h
3144 }
3145 }
3146 else //no problem, colums can stay.
3147 {
3148 if (I == J)
3149 {
3150 A[rij, Array.IndexOf(uplaatsX, J)] = -0.5; //h
3151 Bt[rij, Array.IndexOf(uplaatsY, J)] = L[J] / (2 * Math.PI)

* (Math.Log(L[J] / 2) - 1); //g
3152 }
3153 else
3154 {
3155 A[rij, Array.IndexOf(uplaatsX, J)] = Hon(XN[I], line[J][0],

 line[J][2], YN[I], line[J][1], line[J][3]); //h
3156 Bt[rij, Array.IndexOf(uplaatsY, J)] = Gon(XN[I], line[J][0]

, line[J][2], YN[I], line[J][1], line[J][3], L[J]); //g
3157 }
3158 }
3159
3160 }
3161 }//end if equation should be written
3162 }
3163 }//end if one of them is true
3164 }//end for all J
3165 }//end for all nodes I
3166
3167 }//end calculateAandBt
3168
3169 public void calculateB(ref double[] B, int[] uplaatsY, double[,] Bt, double[] BV)
3170 {
3171 // fill the B array
3172 for (int I = 0; I < Bt.GetLength(0); I++)
3173 {
3174 B[I] = 0;
3175
3176 for (int J = 0; J < Bt.GetLength(1); J++)
3177 {
3178 B[I] = B[I] + Bt[I, J] * BV[uplaatsY[J]];
3179 }//end for loop J
3180 }//end for loop I
3181 }//end calculateB
3182
3183 public void wellinfluenceSmart(double[][] well, double[] XN, double[] YN, double[] B, double[]

T, int[] uplaatsX, int[][] zone)
3184 {
3185 //loop through all (w)ells
3186 for (int w = 0; w < well.GetLength(0); w++)
3187 {
3188 int rij = 0; //counter that indicated the row in B (for every well start from the first

123

47C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

 equation
3189
3190 for (int I = 0; I < XN.GetLength(0); I++)
3191 {
3192 if (zone[I][0] == well[w][3]) //are they in the same zone
3193 {
3194 rij = Array.IndexOf(uplaatsX, I);
3195 B[rij] = B[rij] - (well[w][2] / (2 * Math.PI * T[(int)well[w][3]])) * Math.Log

(Math.Sqrt(Math.Pow(XN[I] - well[w][0], 2) + Math.Pow(YN[I] - well[w][1], 2)));
3196 }
3197
3198 if (zone[I][1] != -1)
3199 {
3200 if (zone[I][1] == well[w][3]) //are they in the same zone
3201 {
3202 rij = Array.LastIndexOf(uplaatsX, I);
3203 B[rij] = B[rij] - (well[w][2] / (2 * Math.PI * T[(int)well[w][3]])) * Math.

Log(Math.Sqrt(Math.Pow(XN[I] - well[w][0], 2) + Math.Pow(YN[I] - well[w][1], 2)));
3204 }
3205 } //end if on the interface
3206 } //end for all elements I
3207 }//end for all wells
3208 }//end wellinfluence
3209
3210 public void solveInteliggent(double[,] A, double[] B, double[] X)
3211 {
3212 /* this script works for square matrices, with whatever dimensions.
3213 * When an element on the diagonal is zero, colums will be swapt in order not to have

problems
3214 */
3215
3216 //variables needed...
3217 double[] Atemp = new double[A.GetLength(1)]; // temporary array for the switch
3218 double Btemp = 0; // temporary array for the switch
3219 double sf = 0; //factor for scaling
3220 Boolean found = new Boolean();
3221
3222 for (int I = 0; I < (A.GetLength(0) - 1); I++)//the last line (and colum) should not be

done
3223 {
3224 found = true; //at the start of each run set it true, when A[I,I] != 0 it will be set

to false
3225 //row per row we will work
3226 //find maximum value of the colum, starting from the row where we are on (I)
3227
3228 if (A[I, I] == 0)
3229 { //there a problem, there is a zero on a place we do not like it at all!
3230 found = false; //there is a zero on A[I,I]
3231
3232 //1) look if there is in this colum a row that has a value different of 0
3233 for (int i = I + 1; i < A.GetLength(0); i++)
3234 {
3235 if (A[i, I] != 0) //when this value is not zero we will swap rows and use this

row to make the rest 0
3236 {
3237
3238 //de rij met de maxima wegschrijven in de matrixes Atemp and Btemp
3239
3240 for (int j = I; j < A.GetLength(0); j++) //for row I, write all colomvalues

 starting at J to temp array
3241 {
3242 //eerst de A matrix
3243 Atemp[j] = A[i, j]; //wegschrijven array met waarden van de rij waar

niet nul
3244 }
3245
3246 Btemp = B[i];
3247
3248 //daarna de rijen verwisselen (1: overschrijf de rij met de maximale

nummers, 2: overschrijf de beschouwde rij)
3249 for (int j = I; j < A.GetLength(0); j++)
3250 {
3251 //eerst de A matrix
3252 A[i, j] = A[I, j];

124

48C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

3253 A[I, j] = Atemp[j];
3254
3255 }
3256
3257 //de matrix B herschikken
3258 B[i] = B[I];
3259 B[I] = Btemp;
3260
3261 found = true; //Yes we found a value different from 0! Hoera!
3262 i = A.GetLength(0); //set i high enough to stop the search for a value that

 is not zero
3263 }
3264 } //end changing rows to get A[I,I] != 0
3265
3266 //2) in the worst situation there were only 0's in the colum, we then should to

colum changed
3267 if (found == false)
3268 {
3269 /* we did not find a row with a value different from 0! So now we will try by

changing a colum
3270 * Look to the first colum on the right, if in it has values on its rows that

are not zero, then
3271 * swap, if there are non, check with the colum one time more on the right of

it, and so on,
3272 * if even the last colum only exists of 0... then give an error message.

something went wrong
3273 * if we by this succeeded in creating a non A[I,I] element, we put found on

true !!!
3274 * don't forget the X matrix (the B matrix remains unchanged by colum

operations)
3275 */
3276
3277
3278
3279 }
3280
3281 //3) if found is still false, then give an error message en stop the progress
3282 if (found == false)
3283 {
3284 MessageBox.Show("An error occured, the matrix is singular! Proces stopped and

no solution was found!");
3285 I = A.GetLength(0); //set I high enough to stop the cycle!
3286 }
3287 }
3288
3289
3290 /* We are now sure that there is no 0 on the A[I,I] and can use the value of A[I,I] to
3291 * empty the rows below it!
3292 */
3293 if (found == true)
3294 {
3295 //a non zer0 A[I,I] value was found: we can now use it to eliminate the values in

the colums of the rows under it!
3296
3297 /* Start not at I, but at I+1, because the Ith row is the one used
3298 * to make the others 0 in the Jth colum
3299 * j starts at J, dont forget matrix B!
3300 */
3301
3302 for (int i = I + 1; i < A.GetLength(0); i++)
3303 {
3304 sf = (A[i, I] / A[I, I]);
3305
3306 //eerste de A matrix
3307 for (int j = I; j < A.GetLength(1); j++)
3308 {
3309 A[i, j] = A[i, j] - sf * A[I, j];
3310 }
3311
3312 //daarna de B matrix
3313 B[i] = B[i] - sf * B[I];
3314 }
3315 }
3316 }

125

49C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

3317
3318 //emptying X
3319 for (int i = 0; i < X.GetLength(0); i++)
3320 {
3321 X[i] = 0;
3322 }
3323
3324
3325 //Matrices have new been ordened, they can now be used by backsolving it to X
3326 for (int k = X.GetLength(0) - 1; k >= 0; k--)
3327 {
3328
3329 double sum = 0;
3330 for (int j = k + 1; j < X.GetLength(0); j++)
3331 {
3332 sum = sum + A[k, j] * X[j];
3333 }
3334 X[k] = (B[k] - sum) / A[k, k];
3335 }
3336 }//end solveInteliggent
3337
3338 public void reorderSmart(double[] BV, double[] X, int[] K1, double[] U, double[] Un, int[][]

zone, int[] uplaatsX)
3339 {
3340 /* This function places the calculated and know values of u in the U vector
3341 * and the values of un in the Un vector
3342 * Herefore it uses the BV vector (with the known values) and the X vector
3343 * with the calculated values. The K1 vector keeps track of what was given
3344 * and makes the decission to write to U or to Un
3345 */
3346
3347 for (int i = 0; i < zone.GetLength(0); i++)
3348 {
3349 // are we dealing with a point on the intersection? Then u and u_n should be written
3350 if (zone[i][1] != -1)
3351 {
3352 U[i] = X[Array.IndexOf(uplaatsX, i)];
3353 Un[i] = X[Array.LastIndexOf(uplaatsX, i)];
3354 }
3355 else
3356 {
3357 if (K1[i] == 0)
3358 {
3359 U[i] = BV[i];
3360 Un[i] = X[Array.IndexOf(uplaatsX, i)];
3361 }
3362 else
3363 {
3364 U[i] = X[Array.IndexOf(uplaatsX, i)];
3365 Un[i] = BV[i];
3366 }
3367 }
3368 }
3369
3370 }//end reorderSmart
3371
3372 public void calculatefitnessfunction(bool[] lineOnCoast, double[] Un, double[] fitness, int

chromosomeCounter, string[][] chromosomes, double[] dmin, int fitnessFunction, double C1, double C2
, double C3, double C4)

3373 {
3374
3375 /* Pay attention that when working with multiple zones, that then the numbering
3376 * of lineOnfCoast is the same of the lines, otherwise the wrong lines will be
3377 * selected...
3378 */
3379
3380 if (fitnessFunction == 0)
3381 {
3382 //fitnessfunction according Katsifarakis
3383
3384 double sumQ = 0;
3385 for (int w = 0; w < well.GetLength(0); w++)
3386 {
3387 sumQ = sumQ + well[w][2];

126

50C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

3388 }
3389
3390
3391
3392 double PEN = 0;
3393 double B = 0;
3394 int k = 0;
3395
3396 for (int s = 0; s < lineOnCoast.GetLength(0); s++)
3397 {
3398 if (lineOnCoast[s] == true)
3399 {
3400 if (Un[s] > 0)
3401 {
3402 if (zone[s][0] != -1 && zone[s][1] == -1)
3403 {
3404 B = B + Un[s] * L[s] * T[zone[s][0]];
3405 }
3406 else if (zone[s][1] != -1 && zone[s][0] == -1)
3407 {
3408 B = B + Un[s] * L[s] * T[zone[s][1]];
3409 }
3410 else
3411 {
3412 MessageBox.Show("Zone undifined");
3413 }
3414 k++;
3415 }
3416 }
3417 }
3418 //nog aanpassen! well niet zeker in zone 0!
3419 PEN = (C1 * k + C2 * B);
3420 fitness[chromosomeCounter] = sumQ - PEN;
3421 }
3422
3423 if (fitnessFunction == 1)
3424 {
3425 //fixed input parameters
3426
3427 //in euro per liter second
3428 double pricespwpersquremeter = 174; //in euro per m²
3429 double tinyear = 10; //number of years (in years)
3430 double pricewater = 0.1; //in m³/s
3431 double t = tinyear * 365 * 24 * 60 * 60; //in s
3432 double h = 10; //height of the spw in meter
3433
3434 // 1. extra income because of extra water flow
3435
3436 double IncomeWater = 0;
3437 int d = 0; //counter for the dmin array
3438
3439 for (int w = 0; w < well.GetLength(0); w++)
3440 {
3441 if (hwell[w][2] == true)
3442 {
3443 IncomeWater = IncomeWater + (well[w][2] - dmin[d]);
3444 d++;
3445 }
3446 }
3447
3448 IncomeWater = IncomeWater * pricewater * t; // (m³/s * Euro/m³ * s = Euro)
3449
3450 //2. extra cost because of the spw that needs to be constructed
3451 double beginSpw = doubleChromosome(chromosomes[chromosomeCounter][chromosomes

[chromosomeCounter].GetLength(0) - 2], spw_min, spw_max, chromosomes[chromosomeCounter][chromosomes
[chromosomeCounter].GetLength(0) - 2].Length);

3452 double lengthSpw;
3453 if (fixed_spw_length == true)
3454 {
3455 lengthSpw = spw_length;
3456 }
3457 else
3458 {
3459 lengthSpw = doubleChromosome(chromosomes[chromosomeCounter][chromosomes

127

51C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

[chromosomeCounter].GetLength(0) - 1], 0, 1, chromosomes[chromosomeCounter][chromosomes
[chromosomeCounter].GetLength(0) - 1].Length) * (spw_max - beginSpw);

3460 }
3461 double CostSpw = lengthSpw * h * pricespwpersquremeter; // (m * m * euro/m² = euro)
3462
3463 //3 & 4. inflow through all coastal lines (B) and number of boundary elements with

inflow (k)
3464
3465 double B = 0;
3466 int k = 0;
3467
3468 for (int s = 0; s < lineOnCoast.GetLength(0); s++)
3469 {
3470 if (lineOnCoast[s] == true)
3471 {
3472 if (Un[s] > 0)
3473 {
3474 if (zone[s][0] != -1 && zone[s][1] == -1)
3475 {
3476 B = B + Un[s] * L[s] * T[zone[s][0]];
3477 }
3478 else if (zone[s][1] != -1 && zone[s][0] == -1)
3479 {
3480 B = B + Un[s] * L[s] * T[zone[s][1]];
3481 }
3482 else
3483 {
3484 MessageBox.Show("Zone undifined");
3485 }
3486 k++;
3487 }
3488 }
3489 }// end for all lines
3490
3491 //4. Calculate fitness
3492 fitness[chromosomeCounter] = C1 * IncomeWater - (C2 * CostSpw + C3 * k + C4 * B*t);
3493
3494 }
3495 if (fitnessFunction == 2)
3496 {
3497 //scaled fitness function
3498 //fixed input parameters
3499
3500 //in euro per liter second
3501 double pricespwpersquremeter = 174; //in euro per m²
3502 double tinyear = 10; //number of years (in years)
3503 double pricewater = 0.1; //in m³/s
3504 double t = tinyear * 365 * 24 * 60 * 60; //in s
3505 double h = 10; //height of the spw in meter
3506
3507 // 1. extra income because of extra water flow
3508
3509 double IncomeWater = 0;
3510 double maxIncomeWater = 0;
3511
3512 int d = 0; //counter for the dmin array
3513
3514 for (int w = 0; w < well.GetLength(0); w++)
3515 {
3516 if (hwell[w][2] == true)
3517 {
3518 maxIncomeWater = maxIncomeWater + (dmax[d] - dmin[d]);
3519 d++;
3520 }
3521 }
3522
3523 maxIncomeWater = maxIncomeWater * t * pricewater;
3524
3525 d = 0; //counter for the dmin array
3526
3527 for (int w = 0; w < well.GetLength(0); w++)
3528 {
3529 if (hwell[w][2] == true)
3530 {

128

52C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

3531 IncomeWater = IncomeWater + (well[w][2] - dmin[d]);
3532 d++;
3533 }
3534 }
3535
3536 IncomeWater = IncomeWater * pricewater * t; // (m³/s * Euro/m³ * s = Euro)
3537
3538 //2. extra cost because of the spw that needs to be constructed
3539 double beginSpw = doubleChromosome(chromosomes[chromosomeCounter][chromosomes

[chromosomeCounter].GetLength(0) - 2], spw_min, spw_max, chromosomes[chromosomeCounter][chromosomes
[chromosomeCounter].GetLength(0) - 2].Length);

3540 double lengthSpw;
3541 if (fixed_spw_length == true)
3542 {
3543 lengthSpw = spw_length;
3544 }
3545 else
3546 {
3547 lengthSpw = doubleChromosome(chromosomes[chromosomeCounter][chromosomes

[chromosomeCounter].GetLength(0) - 1], 0, 1, chromosomes[chromosomeCounter][chromosomes
[chromosomeCounter].GetLength(0) - 1].Length) * (spw_max - beginSpw);

3548 }
3549
3550 double CostSpw = lengthSpw * h * pricespwpersquremeter; // (m * m * euro/m² = euro)
3551 double maxCostSpw = cumulLineEnd[cumulLineEnd.GetLength(0) - 1] * h *

pricespwpersquremeter;
3552
3553 //3 & 4. inflow through all coastal lines (B) and number of boundary elements with

inflow (k)
3554
3555 double B = 0;
3556 int k = 0;
3557 int kmax = 0;
3558
3559 for (int s = 0; s < lineOnCoast.GetLength(0); s++)
3560 {
3561 if (lineOnCoast[s] == true)
3562 {
3563 if (Un[s] > 0)
3564 {
3565 if (zone[s][0] != -1 && zone[s][1] == -1)
3566 {
3567 B = B + Un[s] * L[s] * T[zone[s][0]];
3568 }
3569 else if (zone[s][1] != -1 && zone[s][0] == -1)
3570 {
3571 B = B + Un[s] * L[s] * T[zone[s][1]];
3572 }
3573 else
3574 {
3575 MessageBox.Show("Zone undifined");
3576 }
3577 k++;
3578 }
3579 kmax++;
3580 }
3581 }// end for all lines
3582
3583 //4. Calculate fitness
3584 fitness[chromosomeCounter] = C1 * IncomeWater/maxIncomeWater - C2 * CostSpw/maxCostSpw

- C3 * k/kmax - C4 * B;
3585 }
3586
3587 //fitnessfunction to see if the optimal length is found
3588 //double beginSpw = doubleChromosome(chromosomes[chromosomeCounter][chromosomes

[chromosomeCounter].GetLength(0) - 2], 0, cumulLineEnd[cumulLineEnd.GetLength(0) - 1], chromosomes
[chromosomeCounter][chromosomes[chromosomeCounter].GetLength(0) - 2].Length);

3589
3590 //length is procentualy calculated from distance beginning to distance end
3591 //double lengthSpw = doubleChromosome(chromosomes[chromosomeCounter][chromosomes

[chromosomeCounter].GetLength(0) - 1], 0, 1, chromosomes[chromosomeCounter][chromosomes
[chromosomeCounter].GetLength(0) - 1].Length) * (cumulLineEnd[cumulLineEnd.GetLength(0) - 1] -
beginSpw);

3592 //fitness[chromosomeCounter] = lengthSpw*lengthSpw;

129

53C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

3593
3594
3595 }//end calculatefitnessfunction
3596
3597 public void fillCalculatedChromosomesAndInflowCharacteristics(double fitness, string[]

chromosome, ref double[] Calculatedfitness, ref string[][] Calculatedchromosomes, ref double[]
CalculatedTotalInflow, ref int[] CalculatedTotalInflowNodes, double[] Un, int[][] zone, bool[]
lineOnCoast, double[] L, double[] T)

3598 {
3599 bool copy = new bool();
3600 int numberOfSubChromosomes = chromosome.GetLength(0);
3601
3602 copy = true; //A test will find out if it should be set to false
3603
3604 /* see if the fitnessvalue is already in the Calculatedfitness matrix
3605 * This has already been checked before the function is called, because the
3606 * function is only called when the matrices where calculated. The value that
3607 * will be insert, will thus be a new one for sure, because otherwise it would
3608 * never have been calculated in the first place
3609 */
3610
3611
3612 //for (int j = 0; j < Calculatedfitness.GetLength(0); j++)
3613 //{//j is the counter representing the CalculatedFitness
3614
3615 // if (fitness == Calculatedfitness[j])
3616 // {
3617 // //multiple chromosomes might have the same fitness so it should be checked if

 their subchromosomes are identical
3618 // int numOk = 0;
3619 // for (int s = 0; s < numberOfSubChromosomes; s++)
3620 // {
3621 // if (chromosome[s] == Calculatedchromosomes[j][s])
3622 // {
3623 // numOk++;
3624 // }
3625 // }//end for s
3626
3627 // if (numOk == numberOfSubChromosomes)
3628 // {//then it should not be copied because they had been copied before already
3629 // copy = false;
3630 // }
3631 // }//end if (fitness[i] == Calculatedfitness[j])
3632 //}//end for each chromosome in the store matrices
3633
3634 if (copy == true)
3635 {
3636 //0. New size of the arrays
3637 int newSize = Calculatedfitness.GetLength(0) + 1;
3638
3639 //1. Resize the Calculatedfitness and fill
3640 Array.Resize(ref Calculatedfitness, newSize);
3641 Calculatedfitness[newSize - 1] = fitness;
3642 //Array.Copy(fitness, i, Calculatedfitness, newSize - 1, 1);
3643
3644 //2. Resize the CalculatedChromosomes and fill
3645 Array.Resize(ref Calculatedchromosomes, newSize);
3646 Calculatedchromosomes[newSize - 1] = new string[numberOfSubChromosomes];
3647 for (int s = 0; s < numberOfSubChromosomes; s++)
3648 {
3649 Array.Copy(chromosome, s, Calculatedchromosomes[newSize - 1], s, 1);
3650 }
3651
3652 //3.A Resize the CalculatedTotalInflow and CalculatedTotalInflowNodes
3653 Array.Resize(ref CalculatedTotalInflow, newSize);
3654 Array.Resize(ref CalculatedTotalInflowNodes, newSize);
3655
3656 //3.B Calculate the value of the inflow and the number of boundary elements with

inflow
3657
3658 double B = 0;
3659 int k = 0;
3660
3661 for (int s = 0; s < lineOnCoast.GetLength(0); s++)

130

54C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

3662 {
3663 if (lineOnCoast[s] == true)
3664 {
3665 if (Un[s] > 0)
3666 {
3667 if (zone[s][0] != -1 && zone[s][1] == -1)
3668 {
3669 B = B + Un[s] * L[s] * T[zone[s][0]];
3670 }
3671 else if (zone[s][1] != -1 && zone[s][0] == -1)
3672 {
3673 B = B + Un[s] * L[s] * T[zone[s][1]];
3674 }
3675 else
3676 {
3677 MessageBox.Show("Zone undifined");
3678 }
3679 k++;
3680 }
3681 }
3682 }
3683 CalculatedTotalInflow[newSize-1] = B;
3684 CalculatedTotalInflowNodes[newSize-1] = k;
3685
3686 }//end if (copy == true)
3687 }//end void fillCalculatedChromosomes
3688
3689 public void crossover(string[][] chromosomes, int row, double pc)
3690 {
3691
3692 //crossover on only one
3693 //generate random number to see if crossover taks place
3694
3695 /* calculate random between 0 and 1, to see if crossover takes place
3696 * If crossover takes place it taks place for all the substrings!
3697 */
3698
3699 double R = Random.NextDouble();
3700
3701 if (R <= pc) //crossover should take place
3702 {
3703 //in what chromosome crossover should take place
3704 int R1 = Random.Next(0, chromosomes[0].GetLength(0));
3705
3706 for (int subchr = 0; subchr < chromosomes[0].GetLength(0); subchr++){
3707 if (subchr == R1)
3708 {
3709 //length
3710 int l = chromosomes[0][subchr].Length;
3711
3712 //1. Calculate the place where crossover should take place
3713 int AA = Random.Next(1, l);
3714
3715 //2. Do the crossovert
3716
3717 string deel1Chromosome1 = chromosomes[row][subchr].Substring(0, AA);
3718 string deel2Chromosome1 = chromosomes[row][subchr].Substring(AA, l - AA);
3719 string deel1Chromosome2 = chromosomes[row + 1][subchr].Substring(0, AA);
3720 string deel2Chromosome2 = chromosomes[row + 1][subchr].Substring(AA, l - AA);
3721
3722 chromosomes[row][subchr] = deel1Chromosome1 + deel2Chromosome2;
3723 chromosomes[row + 1][subchr] = deel1Chromosome2 + deel2Chromosome1;
3724 }
3725 if (subchr > R1)
3726 {
3727 string tempStr = chromosomes[row][subchr];
3728
3729 //just switch
3730 Array.Copy(chromosomes[row+1],subchr,chromosomes[row],subchr,1);
3731 chromosomes[row + 1][subchr] = tempStr;
3732 }
3733 }
3734
3735

131

55C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

3736 }//end when crossover should be carried out
3737 }//end crossover
3738
3739 //public void flip(string[][] chromosomes, int row, double pm)
3740 //{
3741 // double R0 = Random.NextDouble();
3742 // if (R0 <= pm)
3743 // {
3744 // // Select subchromosome that will be mutate by chance
3745 // int R1 = Random.Next(0, chromosomes[row].GetLength(0));
3746 // // The length of the subchromosome
3747 // int length = chromosomes[row][R1].Length;
3748 // // the gene that will be mutated
3749 // int R2 = Random.Next(0, length - 1);
3750
3751
3752 // //taking the sub chromosome that was selected
3753 // string subChrTemp = String.Copy(chromosomes[row][R1]);
3754 // //split in parts
3755 // string subChrB = subChrTemp.Substring(0, R2); //begin
3756 // string subChrM1 = subChrTemp.Substring(R2, 1); //to be flipped
3757 // string subChrM2 = subChrTemp.Substring(R2 + 1, 1); //to be flipped
3758 // string subChrE = subChrTemp.Substring(R2 + 2, (length - R2 - 2)); //end
3759 // //flip according Katsifarakis
3760 // if (subChrM1 == "0")
3761 // {
3762 // subChrM1 = "1";
3763 // subChrM2 = "0";
3764 // }
3765 // else
3766 // {
3767 // subChrM1 = "0";
3768 // subChrM2 = "1";
3769 // }
3770 // //past back together
3771 // subChrTemp = subChrB + subChrM1 + subChrM2 + subChrE;
3772
3773 // //store
3774 // chromosomes[row][R1] = String.Copy(subChrTemp);
3775 // }
3776 //}//end flip
3777
3778
3779 public void flip(string[][] chromosomes, int row, double pm)
3780 {
3781 for (int subchromosome = 0; subchromosome < chromosomes[0].GetLength(0); subchromosome++)
3782 {
3783 //calculate the length
3784 int l = chromosomes[row][subchromosome].Length;
3785 int[] chromosome_in_pieces = new int[l];
3786
3787 //cut the string into peaces and convert it to 10-int
3788 for (int i = 0; i < l; i++)
3789 {
3790 chromosome_in_pieces[i] = Convert.ToInt32(chromosomes[row][subchromosome].Substring

(i, 1), 10);
3791 }
3792
3793 //calculate random between 0 and 1
3794
3795 for (int i = 0; i < l-1; i++)
3796 {
3797
3798 double R = Random.NextDouble();
3799 if (R <= pm)
3800 {
3801 if (chromosome_in_pieces[i] == 0)
3802 {
3803 chromosome_in_pieces[i] = 1;
3804 chromosome_in_pieces[i+1] = 0;
3805 }
3806 else //set it to be zero
3807 {
3808 chromosome_in_pieces[i] = 0;

132

56C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

3809 chromosome_in_pieces[i + 1] = 1;
3810 }
3811 }//end when mutation should be carried out
3812 } //end for loop
3813
3814
3815 //make string from all arrayvalues
3816
3817 string resultaat = "";
3818
3819 for (int i = 0; i < l; i++)
3820 {
3821 resultaat = resultaat + chromosome_in_pieces[i].ToString();
3822 }
3823
3824 chromosomes[row][subchromosome] = resultaat;
3825 }
3826 }//end flip
3827
3828
3829 //public void mutation(string[][] chromosomes, int row, double pm)
3830 //{
3831 // double R0 = Random.NextDouble();
3832 // if (R0 <= pm)
3833 // {
3834 // // Select subchromosome that will be mutate by chance
3835 // int R1 = Random.Next(0, chromosomes[0].GetLength(0));
3836 // // The length of the subchromosome
3837 // int length = chromosomes[0][R1].Length;
3838 // // the gene that will be mutated
3839 // int R2 = Random.Next(0, length);
3840
3841 // //taking the sub chromosome that was selected
3842 // string subChrTemp = String.Copy(chromosomes[row][R1]);
3843 // //split in parts
3844 // string subChrB = subChrTemp.Substring(0, R2); //begin
3845 // string subChrM = subChrTemp.Substring(R2, 1); //to be mutated
3846 // string subChrE = subChrTemp.Substring(R2 + 1, (length - R2 - 1)); //end
3847 // //mutate
3848 // if (subChrM == "1")
3849 // {
3850 // subChrM = "0";
3851 // }
3852 // else
3853 // {
3854 // subChrM = "1";
3855 // }
3856 // //past back together
3857 // subChrTemp = subChrB + subChrM + subChrE;
3858
3859 // //store
3860 // chromosomes[row][R1] = String.Copy(subChrTemp);
3861
3862 // }//end if R0 < Pm
3863 //}//end mutation
3864
3865 public void mutation(string[][] chromosomes, int row, double pm)
3866 {
3867 for (int subchromosome = 0; subchromosome < chromosomes[0].GetLength(0); subchromosome++)
3868 {
3869 //calculate the length
3870 int l = chromosomes[row][subchromosome].Length;
3871 int[] chromosome_in_pieces = new int[l];
3872
3873 //cut the string into peaces and convert it to 10-int
3874 for (int i = 0; i < l; i++)
3875 {
3876 chromosome_in_pieces[i] = Convert.ToInt32(chromosomes[row][subchromosome].Substring

(i, 1), 10);
3877 }
3878
3879 //calculate random between 0 and 1
3880
3881 for (int i = 0; i < l; i++)

133

57C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

3882 {
3883
3884 double R = Random.NextDouble();
3885 if (R <= pm)
3886 {
3887 if (chromosome_in_pieces[i] == 0)
3888 {
3889 chromosome_in_pieces[i] = 1;
3890 }
3891 else //set it to be zero
3892 {
3893 chromosome_in_pieces[i] = 0;
3894 }
3895 }//end when mutation should be carried out
3896 } //end for loop
3897
3898
3899 //make string from all arrayvalues
3900
3901 string resultaat = "";
3902
3903 for (int i = 0; i < l; i++)
3904 {
3905 resultaat = resultaat + chromosome_in_pieces[i].ToString();
3906 }
3907
3908 chromosomes[row][subchromosome] = resultaat;
3909 }
3910 }//end mutation
3911
3912 public void calculateOfflinePerformance(double[] offlinefitness, int run, double[] maxfitness)
3913 {
3914 offlinefitness[run] = 0;
3915 for (int i = 0; i < run + 1; i++)
3916 {
3917 offlinefitness[run] = offlinefitness[run] + maxfitness[i];
3918 }
3919 offlinefitness[run] = offlinefitness[run] / (run + 1);
3920 }//end calculateOfflinePerformance
3921
3922 public void calculateOnlinePerformance(double[] onlinefitness, int run, double[] avefitness)
3923 {
3924 onlinefitness[run] = 0;
3925 for (int i = 0; i < run + 1; i++)
3926 {
3927 onlinefitness[run] = onlinefitness[run] + avefitness[i];
3928 }
3929 onlinefitness[run] = onlinefitness[run] / (run + 1);
3930 }//end calculateOnlinePerformance
3931
3932 public void sortJarredArray(double[][] array)
3933 {
3934
3935 double[] tempArray0 = new double[array.GetLength(0)]; //stores the linenumber
3936 double[] tempArray1 = new double[array.GetLength(0)]; //stores the distance line to well
3937 double[] tempArray1Sorted = new double[array.GetLength(0)]; //stores the distance line to

well, this array will be sorted
3938 double[][] sortedArray = new double[array.GetLength(0)][];
3939
3940 //1. save all double values in a 1 dimensional array
3941 for (int i = 0; i < array.GetLength(0); i++)
3942 {
3943 tempArray0[i] = array[i][0];
3944 tempArray1[i] = array[i][1];
3945 tempArray1Sorted[i] = array[i][1];
3946 }
3947
3948 //2. Sort the tempArray[]
3949 Array.Sort(tempArray1Sorted);
3950
3951 //3. Find the original index in array[]
3952 for (int i = 0; i < array.GetLength(0); i++)
3953 {
3954 sortedArray[i] = new double[2];

134

58C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

3955 sortedArray[i][0] = array[Array.LastIndexOf(tempArray1, tempArray1Sorted[i])][0];
3956 sortedArray[i][1] = tempArray1Sorted[i];
3957 }
3958
3959 //4. Copy the values from sorted to the original array.
3960 for (int i = 0; i < array.GetLength(0); i++)
3961 {
3962 for (int j = 0; j < array[i].GetLength(0); j++)
3963 {
3964 array[i][j] = sortedArray[i][j];
3965 }
3966 }
3967 }//end sortJarredArray
3968
3969 public void InflowCharacteristics(int row, double[] L, double[] T, double[] Un, int[][] zone,

bool[] lineOnCoast, ref double[] totalInflow, ref int[] totalInflowNodes)
3970 {
3971 double B = 0;
3972 int k = 0;
3973
3974 for (int s = 0; s < lineOnCoast.GetLength(0); s++)
3975 {
3976 if (lineOnCoast[s] == true)
3977 {
3978 if (Un[s] > 0)
3979 {
3980 if (zone[s][0] != -1 && zone[s][1] == -1)
3981 {
3982 B = B + Un[s] * L[s] * T[zone[s][0]];
3983 }
3984 else if (zone[s][1] != -1 && zone[s][0] == -1)
3985 {
3986 B = B + Un[s] * L[s] * T[zone[s][1]];
3987 }
3988 else
3989 {
3990 MessageBox.Show("Zone undifined");
3991 }
3992 k++;
3993 }
3994 }
3995 }
3996 totalInflow[row] = B;
3997 totalInflowNodes[row] = k;
3998 }//end InflowCharacteristics
3999
4000 public void trialreportxls(int ps, int numberofruns, double pc_begin, double pc_eind, double

pm_begin, double pm_eind, double[] trialMaxFitness, double[][] trialWell, double[]
trialConvergenceVelocity, double[] trialTotalInflow, double[] trialTotalNumberOflinesWithInflow,
int[] trialBestGenFound, double[] trials, double[] triall, int CalculationsSaved, int
NumberOfSubchromoses, int CalculationsSavedWell, int memoryFitness, int memoryWell, double[][]
detailMaxFitness, double[][] detailMinFitness, double[][] detailAveFitness, int[][]
detailCalculationSaved, int[][] detailCalculationSavedWell, double C1, double C2, double C3, double
 C4, bool fixed_spw_length, double spw_length)

4001 {
4002
4003 //giving the name of the file
4004
4005 dateTimeEnd = DateTime.Now;
4006 string time = dateTimeEnd.ToString("yyyy-MM-dd (HH-mm-ss)");
4007 string nameDoc = "report" + time + ".xls";
4008
4009 //open the XLS
4010
4011 Excel.Application xlApp = default(Excel.Application);
4012 Excel.Workbook xlWorkBook = default(Excel.Workbook);
4013 Excel.Worksheet xlWorkSheet = default(Excel.Worksheet);
4014
4015 try
4016 {
4017 object misValue = System.Reflection.Missing.Value;
4018
4019 xlApp = new Excel.Application();
4020 xlWorkBook = xlApp.Workbooks.Open(@"C:\Users\Koen Wildemeersch\Desktop\SjabloomThesis.

135

59C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

xls", misValue, misValue, misValue, misValue, misValue, misValue, misValue, misValue, misValue,
misValue, misValue, misValue, misValue, misValue);

4021 xlWorkSheet = xlWorkBook.Worksheets.get_Item(1);
4022
4023 //1. general
4024 xlWorkSheet.Cells[3, 3] = projectName;
4025 xlWorkSheet.Cells[4, 3] = author;
4026
4027 //2. Calculation Duration
4028
4029 //calculating the time it took
4030 TimeSpan ts = (dateTimeEnd - dateTimeBegin);
4031 string durationtime = new DateTime(ts.Ticks).ToString("HH:mm:ss");
4032
4033 xlWorkSheet.Cells[7, 3] = dateTimeBegin.ToString("dd MMM yyyy - HH:mm:ss");
4034 xlWorkSheet.Cells[8, 3] = dateTimeEnd.ToString("dd MMM yyyy - HH:mm:ss");
4035 xlWorkSheet.Cells[9, 3] = durationtime;
4036
4037 xlWorkSheet.Cells[12, 3] = ps;
4038 xlWorkSheet.Cells[13, 3] = numberofruns;
4039 xlWorkSheet.Cells[14, 3] = trialMaxFitness.GetLength(0);
4040 xlWorkSheet.Cells[15, 3] = elitism;
4041
4042 //selection method
4043 if (selectionType == 0)
4044 {
4045 xlWorkSheet.Cells[12, 6] = "Roulette wheel";
4046 xlWorkSheet.Cells[13, 6] = "-";
4047 }
4048 if (selectionType == 1)
4049 {
4050 xlWorkSheet.Cells[12, 6] = "Ranking";
4051 xlWorkSheet.Cells[13, 6] = selectionConstant;
4052 }
4053 if (selectionType == 2)
4054 {
4055 xlWorkSheet.Cells[12, 6] = "Selection constant";
4056 xlWorkSheet.Cells[13, 6] = selectionConstant;
4057 }
4058
4059 xlWorkSheet.Cells[14, 6] = pc_begin;
4060 xlWorkSheet.Cells[14, 9] = pc_eind;
4061 xlWorkSheet.Cells[15, 6] = pm_begin;
4062 xlWorkSheet.Cells[15, 9] = pm_eind;
4063
4064 //3. fitness function
4065
4066 xlWorkSheet.Cells[18, 3] = fitnessFunction;
4067 xlWorkSheet.Cells[19, 3] = C1;
4068 xlWorkSheet.Cells[20, 3] = C2;
4069 xlWorkSheet.Cells[19, 8] = C3;
4070 xlWorkSheet.Cells[20, 8] = C4;
4071
4072 //4. sheet pile wall
4073
4074
4075 xlWorkSheet.Cells[23, 3] = spw;
4076 if (spw != false)
4077 {
4078 xlWorkSheet.Cells[24, 3] = fixed_spw_length;
4079 if (fixed_spw_length == true)
4080 {
4081 xlWorkSheet.Cells[25, 3] = spw_length;
4082 xlWorkSheet.Cells[28, 3] = chr1_LengthSpw;
4083 xlWorkSheet.Cells[29, 3] = "-";
4084 }
4085 else
4086 {
4087 xlWorkSheet.Cells[25, 3] = "Over entire coastline (between lower and upper

bound)";
4088 xlWorkSheet.Cells[28, 3] = chr1_LengthSpw;
4089 xlWorkSheet.Cells[29, 3] = chr2_LengthSpw;
4090 }
4091 if (spw_min <= 0)

136

60C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

4092 {
4093 xlWorkSheet.Cells[26, 3] = "0";
4094 }
4095 else
4096 {
4097 xlWorkSheet.Cells[26, 3] = spw_min;
4098 }
4099 if (spw_max <= 0)
4100 {
4101 xlWorkSheet.Cells[27, 3] = cumulLineEnd[cumulLineEnd.GetLength(0)-1];
4102 }
4103 else
4104 {
4105 xlWorkSheet.Cells[27, 3] = spw_max;
4106 }
4107
4108 }
4109 else
4110 {
4111 xlWorkSheet.Cells[24, 3] = "-";
4112 xlWorkSheet.Cells[25, 3] = "-";
4113 xlWorkSheet.Cells[26, 3] = "-";
4114 xlWorkSheet.Cells[27, 3] = "-";
4115 xlWorkSheet.Cells[28, 3] = "-";
4116 xlWorkSheet.Cells[29, 3] = "-";
4117 }
4118
4119 //7. Statistics
4120
4121
4122 xlWorkSheet.Cells[56, 6] = trialMaxFitness.Min();
4123 xlWorkSheet.Cells[57, 6] = trialMaxFitness.Average();
4124 xlWorkSheet.Cells[58, 6] = StandardDeviation(trialMaxFitness);
4125 xlWorkSheet.Cells[59, 6] = trialBestGenFound.Max();
4126
4127 int numberOfCalculations = ps * numberofruns * trialMaxFitness.GetLength(0);
4128
4129 xlWorkSheet.Cells[60, 6] = CalculationsSaved;
4130 xlWorkSheet.Cells[60, 7] = "/";
4131 xlWorkSheet.Cells[60, 8] = numberOfCalculations;
4132 xlWorkSheet.Cells[61, 6] = memoryFitness;
4133
4134 xlWorkSheet.Cells[62, 6] = CalculationsSavedWell;
4135 xlWorkSheet.Cells[62, 7] = "/";
4136 xlWorkSheet.Cells[62, 8] = ((numberOfCalculations * well.GetLength(0)) -

CalculationsSaved * well.GetLength(0));
4137 xlWorkSheet.Cells[63, 6] = memoryWell;
4138
4139 //6. best result
4140 //find out where is the best solution?
4141 int IndexBext = Array.IndexOf(trialMaxFitness, trialMaxFitness.Max());
4142
4143 if (spw == true)
4144 {
4145 xlWorkSheet.Cells[46, 3] = trials[IndexBext];
4146 xlWorkSheet.Cells[47, 3] = trials[IndexBext] + triall[IndexBext];
4147 xlWorkSheet.Cells[48, 3] = triall[IndexBext];
4148 }
4149 else
4150 {
4151 xlWorkSheet.Cells[46, 3] = "-";
4152 xlWorkSheet.Cells[47, 3] = "-";
4153 xlWorkSheet.Cells[48, 3] = "-";
4154 }
4155 xlWorkSheet.Cells[44, 3] = IndexBext;
4156 xlWorkSheet.Cells[49, 3] = trialMaxFitness[IndexBext];
4157 xlWorkSheet.Cells[50, 3] = trialTotalInflow[IndexBext];
4158 xlWorkSheet.Cells[51, 3] = trialTotalNumberOflinesWithInflow[IndexBext];
4159 xlWorkSheet.Cells[52, 3] = trialBestGenFound[IndexBext];
4160 xlWorkSheet.Cells[53, 3] = trialConvergenceVelocity[IndexBext];
4161
4162 xlWorkSheet.Cells[44, 4] = 0;
4163 xlWorkSheet.Cells[44, 5] = trialWell[IndexBext * well.GetLength(0)][0];
4164 xlWorkSheet.Cells[44, 6] = trialWell[IndexBext * well.GetLength(0)][1];

137

61C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

4165 xlWorkSheet.Cells[44, 7] = trialWell[IndexBext * well.GetLength(0)][2];
4166
4167
4168 int r = 44;
4169 //if the number of wells is different from 0, extra lines need to be writen for them
4170 if (well.GetLength(0) > 1)
4171 {
4172
4173 for (int w = 1; w < well.GetLength(0); w++)
4174 {
4175 //insert a new row
4176 //xlWorkSheet.Rows.Insert(Microsoft.Office.Interop.Excel.XlDirection.xlDown, r+

2);
4177 r++;
4178
4179 //write the row
4180 xlWorkSheet.Cells[r, 4] = w;
4181 xlWorkSheet.Cells[r, 5] = trialWell[IndexBext * well.GetLength(0) + w][0];
4182 xlWorkSheet.Cells[r, 6] = trialWell[IndexBext * well.GetLength(0) + w][1];
4183 xlWorkSheet.Cells[r, 7] = trialWell[IndexBext * well.GetLength(0) + w][2];
4184
4185 }
4186 }
4187
4188 //5. writing the wells.
4189
4190 //counter for dmin and dmax
4191 int dd = 0;
4192 r = 37;
4193 for (int i = 0; i < well.GetLength(0); i++)
4194 {
4195 xlWorkSheet.Cells[r, 2] = i;
4196
4197 for (int j = 0; j < 3; j++)
4198 {
4199 if (hwell[i][j] == false)
4200 {
4201 xlWorkSheet.Cells[r, 3 + j * 2] = well[i][j];
4202 xlWorkSheet.Cells[r, 3 + j * 2 + 1] = well[i][j];
4203 }
4204 else
4205 {
4206 xlWorkSheet.Cells[r, 3 + j * 2] = dmin[dd];
4207 xlWorkSheet.Cells[r, 3 + j * 2 + 1] = dmax[dd];
4208 dd++;
4209 }
4210 }
4211 xlWorkSheet.Cells[r, 9] = chrLengthWell[i];
4212 r++; //so we know what is the next line to write
4213 }
4214
4215 //2. Write all results
4216 xlWorkSheet = (Excel.Worksheet)xlWorkBook.Worksheets.get_Item(2);
4217
4218 int row = 3;
4219
4220 for (int trial = 0; trial < trialMaxFitness.GetLength(0); trial++)
4221 {
4222 xlWorkSheet.Cells[row, 1] = trial;
4223 xlWorkSheet.Cells[row, 2] = trialMaxFitness[trial];
4224 xlWorkSheet.Cells[row, 3] = 0;
4225 xlWorkSheet.Cells[row, 4] = trialWell[trial * well.GetLength(0)][0];
4226 xlWorkSheet.Cells[row, 5] = trialWell[trial * well.GetLength(0)][1];
4227 xlWorkSheet.Cells[row, 6] = trialWell[trial * well.GetLength(0)][2];
4228 xlWorkSheet.Cells[row, 7] = trialConvergenceVelocity[trial];
4229 xlWorkSheet.Cells[row, 8] = trialTotalInflow[trial];
4230 xlWorkSheet.Cells[row, 9] = trialTotalNumberOflinesWithInflow[trial];
4231 xlWorkSheet.Cells[row, 10] = trialBestGenFound[trial];
4232 if (spw == true)
4233 {
4234 xlWorkSheet.Cells[row, 11] = trials[trial];
4235 xlWorkSheet.Cells[row, 12] = trials[trial] + triall[trial];
4236 xlWorkSheet.Cells[row, 13] = triall[trial];
4237 }

138

62C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

4238
4239 //if the number of wells is different from 0, extra lines need to be writen for

them
4240 if (well.GetLength(0) > 1)
4241 {
4242 for (int w = 1; w < well.GetLength(0); w++)
4243 {
4244 row++;
4245 xlWorkSheet.Cells[row, 3] = w;
4246 xlWorkSheet.Cells[row, 4] = trialWell[trial * well.GetLength(0) + w][0];
4247 xlWorkSheet.Cells[row, 5] = trialWell[trial * well.GetLength(0) + w][1];
4248 xlWorkSheet.Cells[row, 6] = trialWell[trial * well.GetLength(0) + w][2];
4249 }
4250 }
4251 row++;
4252
4253 }//end every trial to write report
4254
4255 //3. Well Calculations Saved
4256 xlWorkSheet = (Excel.Worksheet)xlWorkBook.Worksheets.get_Item(3);
4257 for (int i = 0; i < detailCalculationSavedWell[0].GetLength(0); i++)
4258 {
4259 xlWorkSheet.Cells[1, i + 2] = i;
4260 }
4261 row = 2;
4262 for (int i = 0; i < detailCalculationSavedWell.GetLength(0); i++)
4263 {
4264 xlWorkSheet.Cells[row, 1] = i;
4265 for (int j = 0; j < detailCalculationSavedWell[0].GetLength(0); j++)
4266 {
4267 xlWorkSheet.Cells[row, j + 2] = detailCalculationSavedWell[i][j];
4268 }
4269 row++;
4270 }
4271
4272 //4. Calculations Saved
4273 xlWorkSheet = (Excel.Worksheet)xlWorkBook.Worksheets.get_Item(4);
4274 for (int i = 0; i < detailCalculationSaved[0].GetLength(0); i++)
4275 {
4276 xlWorkSheet.Cells[1, i + 2] = i;
4277 }
4278 row = 2;
4279 for (int i = 0; i < detailCalculationSaved.GetLength(0); i++)
4280 {
4281 xlWorkSheet.Cells[row, 1] = i;
4282 for (int j = 0; j < detailCalculationSaved[0].GetLength(0); j++)
4283 {
4284 xlWorkSheet.Cells[row, j + 2] = detailCalculationSaved[i][j];
4285 }
4286 row++;
4287 }
4288
4289
4290 //5. Detail min Fitness
4291 xlWorkSheet = (Excel.Worksheet)xlWorkBook.Worksheets.get_Item(5);
4292 for (int i = 0; i < detailMinFitness[0].GetLength(0); i++)
4293 {
4294 xlWorkSheet.Cells[1, i + 2] = i;
4295 }
4296 row = 2;
4297 for (int i = 0; i < detailMinFitness.GetLength(0); i++)
4298 {
4299 xlWorkSheet.Cells[row, 1] = i;
4300 for (int j = 0; j < detailMinFitness[0].GetLength(0); j++)
4301 {
4302 xlWorkSheet.Cells[row, j + 2] = detailMinFitness[i][j];
4303 }
4304 row++;
4305 }
4306
4307
4308 //6. Detail max fitness
4309 xlWorkSheet = (Excel.Worksheet)xlWorkBook.Worksheets.get_Item(6);
4310 for (int i = 0; i < detailAveFitness[0].GetLength(0); i++)

139

63C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

4311 {
4312 xlWorkSheet.Cells[1, i + 2] = i;
4313 }
4314 row = 2;
4315 for (int i = 0; i < detailAveFitness.GetLength(0); i++)
4316 {
4317 xlWorkSheet.Cells[row, 1] = i;
4318 for (int j = 0; j < detailAveFitness[0].GetLength(0); j++)
4319 {
4320 xlWorkSheet.Cells[row, j + 2] = detailAveFitness[i][j];
4321 }
4322 row++;
4323 }
4324
4325
4326 //7. Detail max fitness
4327 xlWorkSheet = (Excel.Worksheet)xlWorkBook.Worksheets.get_Item(7);
4328 for (int i = 0; i < detailMaxFitness[0].GetLength(0); i++)
4329 {
4330 xlWorkSheet.Cells[1, i + 2] = i;
4331 }
4332 row = 2;
4333 for (int i = 0; i < detailMaxFitness.GetLength(0); i++)
4334 {
4335 xlWorkSheet.Cells[row, 1] = i;
4336 for (int j = 0; j < detailMaxFitness[0].GetLength(0); j++)
4337 {
4338 xlWorkSheet.Cells[row, j + 2] = detailMaxFitness[i][j];
4339 }
4340 row++;
4341 }
4342
4343
4344
4345 xlWorkBook.SaveAs(nameDoc, Excel.XlFileFormat.xlWorkbookNormal, misValue, misValue,

misValue, misValue, Excel.XlSaveAsAccessMode.xlExclusive, misValue, misValue, misValue, misValue,
misValue);

4346 xlWorkBook.Close(true, misValue, misValue);
4347 xlApp.Quit();
4348
4349 releaseObject(xlWorkSheet);
4350 releaseObject(xlWorkBook);
4351 releaseObject(xlApp);
4352 }
4353 finally
4354 {
4355 if (xlApp != null)
4356 releaseObject(xlApp);
4357 if (xlWorkBook != null)
4358 releaseObject(xlWorkBook);
4359 if (xlWorkSheet != null)
4360 releaseObject(xlWorkSheet);
4361 }
4362
4363 if (System.IO.File.Exists(nameDoc))
4364 {
4365 if (MessageBox.Show("Would you like to open the excel file?", this.Text,

MessageBoxButtons.YesNo, MessageBoxIcon.Question) == DialogResult.Yes)
4366 {
4367 try
4368 {
4369 System.Diagnostics.Process.Start(nameDoc);
4370 }
4371 catch (Exception ex)
4372 {
4373 MessageBox.Show("Error opening the excel file." + Environment.NewLine +
4374 ex.Message, this.Text, MessageBoxButtons.OK, MessageBoxIcon.Error);
4375 }
4376 }
4377 }
4378
4379 }//end function write trialreportxls
4380
4381 private void releaseObject(object obj)

140

64C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

4382 {
4383 if (obj == null)
4384 throw new ArgumentNullException("obj");
4385 try
4386 {
4387 System.Runtime.InteropServices.Marshal.ReleaseComObject(obj);
4388 }
4389 catch { }
4390 }
4391
4392
4393
4394 //statics
4395
4396 static int totalNumberOfUnknown(int[][] zone)
4397 {
4398 /* First of all the total number of unknown should be calculated:
4399 * for all nodes there is an eqation, and for the nodes on the interface
4400 * there is an extra. The number of unknown is thus the dimension of XM +
4401 * the number of arrays zone where zone[I][1] != -1
4402 */
4403 int number = zone.GetLength(0); //one equation per node in any case
4404
4405 for (int i = 0; i < zone.GetLength(0); i++)
4406 {
4407 if (zone[i][1] != -1)
4408 { //if it is different from -1 it means it is on the interface so an extra eq is needed
4409 number++;
4410 } //end if
4411 }//end for i
4412 return number;
4413 }//end totalNumberOfUnknown
4414
4415 static int numberOfCoastalElements(bool[] ulineOnCoast)
4416 {
4417 int number = 0;
4418 for (int i = 0; i < ulineOnCoast.GetLength(0); i++)
4419 {
4420 if (ulineOnCoast[i] == true)
4421 {
4422 number++;
4423 }
4424 }
4425 return number++;
4426 }//end numberOfCoastalElements
4427
4428 static double Gon(double x0, double x1, double x2, double y0, double y1, double y2, double lj)
4429 {
4430
4431 //values of /xi (k) and w (k) (for 4 (k=0,1,2 or 3) point Gauss integration)
4432 double[] xi = new double[4] { -0.861136311594053, -0.339981043584856, 0.339981043584856, 0.

861136311594053 };
4433 double[] w = new double[4] { 0.347854845137454, 0.652145154862546, 0.652145154862546, 0.

347854845137454 };
4434 double x_xi; //X coordinate as function of xi
4435 double y_xi; //Y coordinate as function of xi
4436 double r_xi; //r
4437 double sum = 0; // sum necessary for calculating G
4438
4439 //calculate the summation
4440
4441 for (int k = 0; k < 4; k++)
4442 {
4443 x_xi = (x2 + x1) / 2 + (x2 - x1) / 2 * xi[k];
4444 y_xi = (y2 + y1) / 2 + (y2 - y1) / 2 * xi[k];
4445 r_xi = Math.Sqrt(Math.Pow((x_xi - x0), 2) + Math.Pow((y_xi - y0), 2));
4446 sum = sum + Math.Log(r_xi) * w[k];
4447 }
4448 return lj / (4 * Math.PI) * sum; //G is calculated correctly
4449 }//end Gon
4450
4451 static double Hon(double x0, double x1, double x2, double y0, double y1, double y2)
4452 {
4453 double DY1 = y1 - y0;

141

65C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

4454 double DX1 = x1 - x0;
4455 double DY2 = y2 - y0;
4456 double DX2 = x2 - x0;
4457 double DL1 = Math.Sqrt(DX1 * DX1 + DY1 * DY1);
4458 double cos1 = DX1 / DL1;
4459 double sin1 = DY1 / DL1;
4460 double DX2R = DX2 * cos1 + DY2 * sin1;
4461 double DY2R = -DX2 * sin1 + DY2 * cos1;
4462 return (Math.Atan2(DY2R, DX2R) / (2 * Math.PI));
4463 }//end Hon
4464
4465 static double doubleChromosome(string chromosome, double dmin, double dmax, int

lengthchromosome)
4466 {
4467 double I32; //for very high exponents C# makes mistakes with int, therefore use double
4468 double dchromosome;
4469
4470 //calculate the length
4471 int l = chromosome.Length;
4472 int[] chromosome_in_pieces = new int[l];
4473
4474 //cut the string into peaces and convert it to 10-int
4475 for (int i = 0; i < l; i++)
4476 {
4477 chromosome_in_pieces[i] = Convert.ToInt32(chromosome.Substring(i, 1), 10);
4478 }
4479
4480 //now go through the chromosome and calculate the int value
4481
4482 I32 = 0;
4483 for (int i = 0; i < l - 1; i++)
4484 {
4485 I32 = I32 + Math.Pow(2 * chromosome_in_pieces[i], (l - 1 - i));
4486 }
4487
4488 //for the last bit
4489 I32 = I32 + chromosome_in_pieces[l - 1];
4490
4491 //from the int calculate the double
4492
4493 dchromosome = (dmax - dmin) / (Math.Pow(2, l) - 1) * I32 + dmin;
4494
4495 return dchromosome;
4496 }//end doubleChromosome
4497
4498 static int numberOfLinesAffected(int[] lineorder, int lineBegin, int lineEnd)
4499 {
4500 int numberOfLinesAffected = 0;
4501 int t = Array.IndexOf(lineorder, lineBegin);
4502 bool onSWP = new bool();
4503 onSWP = true;
4504 while (onSWP == true)
4505 {
4506 if (lineorder[t] == lineEnd)
4507 {
4508 numberOfLinesAffected++;
4509 onSWP = false;
4510 }
4511 else
4512 {
4513 numberOfLinesAffected++;
4514 }
4515 t++; //go to next line
4516 }
4517 return numberOfLinesAffected;
4518 }//end numberOfLinesAffected
4519
4520 static bool extraLineForBeginSpw(double[] cumulLineEnd, double beginSpw, int lineBegin, int[]

lineorder)
4521 {
4522 bool extraForBeginSpw = new bool();
4523 extraForBeginSpw = false;
4524 //when begin is not on the end/begin point of the original line a subdivision is to be made
4525

142

66C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

4526 if (Array.IndexOf(lineorder, lineBegin) == 0)
4527 {
4528 if (beginSpw != 0)
4529 {//the statistic posibility that the SPW starts in the beginning of the coastline
4530 extraForBeginSpw = true;
4531 }
4532 }
4533 else
4534 {
4535 if (beginSpw != cumulLineEnd[Array.IndexOf(lineorder, lineBegin) - 1])
4536 {
4537 extraForBeginSpw = true;
4538 }
4539 }
4540 return extraForBeginSpw;
4541 }//end extraLineForBeginSpw
4542
4543 static bool extraLineForEndSpw(double[] cumulLineEnd, double endSpw, int lineEnd, int[]

lineorder)
4544 {
4545 bool extraforEndSpw = new bool();
4546 extraforEndSpw = false;
4547 if (endSpw != cumulLineEnd[Array.IndexOf(lineorder, lineEnd)])
4548 {
4549 extraforEndSpw = true;
4550 }
4551 return extraforEndSpw;
4552 }//end extraLineForEndSpw;
4553
4554 static int SelectByRoulettewheel(double[] fitness)
4555 {
4556 //1. find the minimum value of the fitnessfunction
4557 double minFitness = fitness.Min();
4558 double maxFitness = fitness.Max();
4559 int NumOfMin = 0;
4560 int NumOfMax = 0;
4561 bool areAllAsFit = new bool();
4562 areAllAsFit = true;
4563 double[] probability = new double[fitness.GetLength(0)];
4564 double pmin;
4565
4566 //2. Calculate the probability that will be given to that minimum fitness
4567
4568 //2.1 Find out if all chromosomes are as fit
4569 if (minFitness != maxFitness)
4570 {
4571 areAllAsFit = false;
4572 }
4573
4574 if (areAllAsFit == true)
4575 {
4576 //same probability
4577
4578 pmin = 1 / Convert.ToDouble(fitness.GetLength(0));
4579 for (int c = 0; c < fitness.GetLength(0); c++)
4580 {
4581 probability[c] = pmin;
4582 }
4583 }
4584 else
4585 {
4586 pmin = 1 / Math.Pow(fitness.GetLength(0), 2);
4587
4588 //3. Calculate a the ratio of the lowest and hightest probability
4589 //3.1. Calculate factor
4590 double dmax = Math.Abs(minFitness - maxFitness);
4591 double suml = 0;
4592 double factor = 0;
4593 for (int c = 0; c < fitness.GetLength(0); c++)
4594 {
4595 if (fitness[c] == minFitness)
4596 {
4597 NumOfMin++;
4598 }

143

67C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

4599 else if (fitness[c] == maxFitness)
4600 {
4601 NumOfMax++;
4602 }
4603 else
4604 {
4605 suml = suml + Math.Abs((fitness[c] - minFitness) / (dmax));
4606 }
4607 }
4608 factor = (1 / pmin - NumOfMin - (fitness.GetLength(0) - (NumOfMin + NumOfMax)) + suml)

/ (NumOfMax + suml);
4609
4610 for (int c = 0; c < fitness.GetLength(0); c++)
4611 {
4612 if (fitness[c] == minFitness)
4613 {
4614 probability[c] = pmin;
4615 }
4616 else if (fitness[c] == maxFitness)
4617 {
4618 probability[c] = pmin * factor;
4619 }
4620 else
4621 {
4622 probability[c] = pmin + (factor - 1) * pmin * Math.Abs((fitness[c] -

minFitness) / (dmax));
4623 }
4624 }
4625 }//end if not as fit
4626
4627 double sumProb = probability.Sum();
4628 if (sumProb < 0.95 || sumProb > 1.05)
4629 {
4630 MessageBox.Show("Error During probability calculation! (" + sumProb + ")");
4631 }
4632 //4. With there probabilities used RouletteWheel and select one chromosome
4633 //select a chromosome via roulette wheel selection
4634 double tempMaximum = 0;
4635 int selectedchromosome = 0;
4636
4637 //calculate random between 0 and 1
4638 double R = Random.NextDouble();
4639
4640 for (int i = 0; i < fitness.GetLength(0); i++)
4641 {
4642 tempMaximum = tempMaximum + probability[i];
4643 if (tempMaximum > R)
4644 {
4645 selectedchromosome = i; //this is the index of the selected element
4646 i = fitness.GetLength(0); //stop the loop
4647 }
4648 }
4649
4650 //5. Return this chromosome
4651 return selectedchromosome;
4652
4653
4654
4655
4656 }//end selectByRoulettewheel
4657
4658 static int SelectByConstantSelection(double[] fitness, int KK)
4659 {
4660 int[] KKChromosome = new int[KK];
4661 double[] KKfitness = new double[KK];
4662
4663 //1. Select KK chromosomes
4664 for (int k = 0; k < KK; k++)
4665 {
4666 int R = Random.Next(0, fitness.GetLength(0));
4667 KKChromosome[k] = R;
4668 Array.Copy(fitness, R, KKfitness, k, 1);
4669 }
4670

144

68C:\Users\Koen Wildemeersch\documents\visual ...\KoenWildemeerschThesisWithInterface\Run.cs

4671 //2. find the maxima fitness
4672 int IndexMaxFitness = Array.IndexOf(KKfitness, KKfitness.Max());
4673 int IndexSelectedChromosome = KKChromosome[IndexMaxFitness];
4674
4675 //3. return the index of the selected chromosome
4676 return IndexSelectedChromosome;
4677 }//end SelectByConstantSelection
4678
4679 static double Pc(int run, int ps, double pc_begin, double pc_eind)
4680 {
4681 return pc_begin - ((pc_begin - pc_eind) / ps) * run;
4682 }//end Pc
4683
4684 static double Pm(int run, int ps, double pm_begin, double pm_eind)
4685 {
4686 return pm_begin - ((pm_begin - pm_eind) / ps) * run;
4687 }//end Pm
4688
4689 static double calculateConvergenceVelocity(double[] maxfitness)
4690 {
4691 double B = 1;
4692 double diff = B - maxfitness[0];
4693 double A = maxfitness[maxfitness.GetLength(0) - 1] + diff;
4694 return Math.Log(Math.Sqrt(A / B));
4695 //return Math.Log(Math.Sqrt(maxfitness[maxfitness.GetLength(0) - 1] / maxfitness[0]));
4696 }//end calculateConvergenceVelocity
4697
4698 static double Dsx(double[][] uline, double[] uL, double[] cumulLineEnd, int lineNumber, double

S, int[] lineorder)
4699 {//calculates delta s accordint the x-as
4700 double Dsx = 0;
4701 double ls = uL[lineNumber] - (cumulLineEnd[Array.IndexOf(lineorder, lineNumber)] - S);
4702 Dsx = ls * (uline[lineNumber][2] - uline[lineNumber][0]) / uL[lineNumber];
4703 return Dsx;
4704 }//end Dsx
4705
4706 static double Dsy(double[][] uline, double[] uL, double[] cumulLineEnd, int lineNumber, double

S, int[] lineorder)
4707 {//calculates delta s accordint the x-as
4708 double Dsy = 0;
4709 double ls = uL[lineNumber] - (cumulLineEnd[Array.IndexOf(lineorder, lineNumber)] - S);
4710 Dsy = ls * (uline[lineNumber][3] - uline[lineNumber][1]) / uL[lineNumber];
4711 return Dsy;
4712 }//end Dsy
4713
4714 static double StandardDeviation(double[] trialMaxFitness)
4715 {
4716 double SumOfSqrs = 0;
4717 double average = trialMaxFitness.Average();
4718 for (int i = 0; i < trialMaxFitness.GetLength(0); i++)
4719 {
4720 SumOfSqrs += Math.Pow((trialMaxFitness[i] - average), 2);
4721 }
4722 return Math.Sqrt(SumOfSqrs / (trialMaxFitness.GetLength(0) - 1));
4723 }//end StandardDevition
4724 }
4725 }
4726

145

Bibliography

[1] J.T. Katsikadelis. Boundary elements. theorie and applications. Elsevier, 2002.

[2] B. Verhegghe. Elementenmethode in de toegepaste mechanica. Universiteit Gent, 2008.

[3] H. Peiffer. Grondwater en contaminenten stroming. Universiteit Gent.

[4] C.A. Brebbia and J. Dominguez. Boundary elements an introductory course. Witpress,
1998.

[5] G. Beer. Programming the boundary element method. An introduction for engineers.
Wiley, 2001.

[6] F. Paris and J. Canas. Boundary element method. Fundamentals and applications. Oxford
University Press, 1997.

[7] J.C.F. Telles C.A. Brebbia and L.C. Wrobel. Boundary element techniques. Springer-
Verlag, 1984.

[8] K.L. Katsifarakis and Z. Petala. Combining genetic algorithms and boundary elements to
optimize coastal aquifers’ management. In Journal of Hydrology, pages 200–207. Elsevier,
2006.

[9] N. Theodosiou K.L. Katsifarakis, D.K. Karpouzos. Combined use of bem and genetic
algorithms in groundwater flow and mass transport problems. In Engineering Analysis
with boundary elements, pages 555–565. Elsevier, 1999.

[10] Qbasic tutorial. http://westcompsci.pima.edu/cis100.

[11] The qbasis station. http://www.qbasicstation.com/.

[12] K. Wildemeersch. Grondwaterstandvariaties in zeedijken ten gevolge van de getijden-
werking. Master’s thesis, KHBO, 2008.

[13] C. A. Brebbia. The boundary element method for engineers. Pentech press, 1978.

[14] M. Mitchell. An introduction to genetic algorithms. MIT Press, 1998.

[15] Universität Stuttgart. Boundary element methods. http://www.iam.uni-stuttgart.

de/bem/, 2004.

[16] Food and agriculture organisation of the United Nations. Seawater intrusion in coastal
aquifers. FAO, 1997.

146

http://westcompsci.pima.edu/cis100
http://www.qbasicstation.com/
http://www.iam.uni-stuttgart.de/bem/
http://www.iam.uni-stuttgart.de/bem/

[17] Coley D. A. An introduction to genetic algorithms for scientists and engineers. World
Scientific, 2005.

[18] Centre for Civil Engineering Research and Codes. Backgrounds of numerical modelling
of geotechnical constructions, part 3. CUR, 2000.

[19] D. Ouazar A.H.-D. Cheng. Groundwater optimization and parameter estimation by ge-
netic algorithms and dual reciprocity boundary element method. In Engineering Analysis
with boundary elements, pages 287–296. Elsevier, 1997.

[20] et al. K. El Harrouni, D. Ouazar. Groundwater. In Boundary Element Techniques in
Geomechanics, pages 243–294. Elsevier, 1993.

[21] P. Tolikas E. Sidiropoulos. Genetic alorithms and cellular automata in aquifer manage-
ment. In Applied Mathematical modelling 32, pages 617–640. Elsevier, 2008.

[22] Wikipedia. Boundary element methods. http://en.wikipedia.org/wiki/Boundary_

element_method, 2010.

[23] K.L. Katsifarakis and D.K. Karpouzos. Minimization of pumping cost in zoned aquifers
by means of genetic algorithms. In Proceedings of the international conference on pro-
tection and restoration of the environment IV, pages 61–68, 1998.

[24] Z. Petala. Optimizing management of coastal aquifers by means of genetic algorithms
(in Greek). PhD thesis, Department of Civil Engineering, Aristotle University of Thes-
saloniki, Greece, 2004.

147

http://en.wikipedia.org/wiki/Boundary_element_method
http://en.wikipedia.org/wiki/Boundary_element_method

List of Figures

3.1 Domain Ω with boundary Γ . 16
3.2 Density Q(ξ, η) from source point P (x, y) . 20
3.3 Derivative r to n . 22
3.4 P outside of the domain . 24
3.5 The use of constant line elements . 28
3.6 Nodal points p, q and P . 29
3.7 Global and local coordinate system . 32
3.8 Relation between α and s . 33
3.9 Path σ for sheet pile wall . 36
3.10 Changes to boundary elements when a sheet pile wall is used and the begin

and end point of the sheet pile wall is on one boundary element only 37
3.11 Changes to boundary element when a sheet pile wall is used and the begin and

end point of the sheet pile wall affect more than one boundary element only . 38
3.12 Creating extra lines by subdividing (sheet pile wall) 39
3.13 Multi-zone body . 42
3.14 Multi-zone body (detail) . 44

4.1 Combined use of genetic algorithm and boundary element method 49
4.2 Combined use of genetic algorithm and boundary element method - A Block 50

5.1 Aquifer studied . 51
5.2 Calculations saved because of memory as function of the generation during the

first trial . 54
5.3 Calculations saved because of memory as function of the trial 55
5.4 φmax as function of γ . 62

148

List of Tables

3.1 4 point Gauss integration - Abscissas and weights 30

5.1 Input parameters . 52
5.2 Objective 2: Results for ΦK , Q1, Q2 and Gmax 53
5.3 Objective 2: fine tuned results for ΦK , Q1, Q2, Gmax and the number of calcu-

lations saved per trial . 56
5.4 Comparison selection methods for Pm = Pf = 0.06 per gene - Q and φ 58
5.5 Comparison selection methods for Pm = Pf = 0.06 per gene - Times found G,

Σ, memory size and duration . 58
5.6 Comparison selection methods for Pm = Pf = 0.06 per chromosome - Q and φ 59
5.7 Comparison selection methods for Pm = Pf = 0.06 per chromosome - Times

found G, Σ, memory size and duration . 59
5.8 lspw = 1000 (fine tune) - Q and φ . 60
5.9 lspw = 1000 (fine tune) - Times found G, Σ, memory size and duration 60
5.10 Influence of interchangingly mutation and antimetathesis for lspw = 1000 (fine

tune) - Q and φ . 61
5.11 Influence of interchangingly mutation and antimetathesis for lspw = 1000 (fine

tune) - Times found G, Σ, memory size and duration 61
5.12 Influence of refreshing the population size for KK = 4 63
5.13 Results for lspw = 1000m, second set of trials 64
5.14 Results for lspw = 800m, first set of trials . 65
5.15 Results for lspw = 800m, second set of trials 65
5.16 Results for lspw = 600m, first set of trials . 66
5.17 Results for lspw = 600m, second set of trials 66
5.18 Results for lspw = 400m, first set of trials . 67
5.19 Results for lspw = 200m, second set of trials 67
5.20 Summary: results for lspw = 200− 1000 m . 68
5.21 Influence of one extra well W3(1050, 750), second set of trials 68

6.1 Summary: results for lspw = 200− 1000 m . 71

149

This page intentionally left blank

	Foreword
	Copyright
	Extended abstract
	Table of contents
	Nomenclature and abbreviations
	Introduction and objectives
	Genetic algorithms
	Genetic algorithms versus traditional solution finding
	How do genetic algorithms work: analogy to natural genetics
	Chromosomes and the binary system
	Operators
	Selection
	Crossover
	Mutation
	Antimetathesis
	Elitism

	A simple example
	Test functions
	max as function of
	Off and on-line performance
	Convergence velocity
	The run with maximum fitness

	Boundary element method
	Introduction
	In this chapter
	What is the boundary element method
	Why the boundary element method? - Comparison to FEM

	Mathematical background
	The Gauss-Green theorem
	The divergence theorem of Gauss
	Green's second identity
	The Dirac delta function
	The fundamental solution

	Mathematical formulation of the boundary element method
	Homogeneous equation
	Non homogeneous equation

	Numeric formulation
	Discretization
	Hij and Gij
	Multi-zone body or composite domain
	Well influence
	Sheet pile wall
	Gauss elimination

	Minimizing the calculation work
	Calculating A and Bt immediately
	Reducing calculation time for A and Bt matrix

	Simple example

	Combined use of genetic algorithm and boundary element method
	Further minimization of the calculation work
	Well memory
	Chromosomes memory

	Schema

	Application examples
	Objective 1: optimal well flow for two fixed wells
	Results
	The use of the memory per trial
	Reducing calculation time for A and Bt matrix
	From good to optimum results

	Objective 2 and 3: implementation of a sheet pile wall - Input parameters
	Different selectors
	Influence of mutation and flip probability
	Fine tuning the results
	Influence of the population size and number of generations
	Interchanging mutation and antimetathesis
	Refreshment

	Objective 2 and 3: implementation of a sheet pile wall - comparison for 5 different lengths
	Sheet pile wall of 1000 m
	Sheet pile wall of 800 m
	Sheet pile wall of 600 m
	Sheet pile wall of 400 m
	Sheet pile wall of 200 m
	Summary

	Sheet pile wall versus one extra well

	Discussion and conclusions
	Reliability of the designed algorithm
	Further research

	Post processor
	Extract of source code
	Bibliography
	List of Figures
	List of Tables

